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   Dear editor,

In  this  letter,  we  introduce  a  decentralized,  nonlinear,  disconti-
nuous,  and  computationally  simple  control  law  for  large  scale
multiagent  navigation  systems.  The  control  is  based  on  extending
Gauss’s principle of least constraint with a dynamic incorporation of
inequality  constraints,  actuator  saturation,  and  actuator  dynamics.
With no individual path planner, each agent executes its motion and
generates its control actions by reacting solely to the evolution of its
constrained dynamics, which is equivalent to solving a linear matrix
equation with a dimension up to around 20 without iteration at each
time  instant.  Numerical  experiments  are  conducted  on  hundreds  of
two-dimensional  (2-D)  double  integrators  subjected  to  path  and
collision  constraints,  demonstrating  the  promise  of  the  proposed
method.

Recent years have witnessed an increasing popularity of multiagent
navigation  systems  in  diverse  applications  such  as  exploration,
surveillance,  and  rescue  [1].  Ongoing  research  efforts  have  been
focusing  on  synthesizing  multiagent  control  systems  equipped  with
interagent  collision  avoidance  and  computational  simplicity  [2].
Velocity  obstacles  (VOs)  [3],  [4],  artificial  potential  fields  (APFs)
[5],  [6],  mixed-integer programs (MIPs) [7],  [8],  and control  barrier
functions (CBFs) [9], [10] are among those endeavors.

With  certain  levels  of  success  achieved,  these  methods  may  have
shortcomings  under  certain  circumstances.  For  examples,  constant
speeds  are  assumed  in  collision  avoidance  in  VO  methods  with  no
solution uniqueness guarantee [3], [4]. APF methods [5], [6] presume
infinitely large control actions in order to prevent collisions as agents
get  sufficiently  close  to  each  other,  and  it  is  acknowledged  that
trajectories  can  get  stuck  into  local  minima.  When  the  number  of
agents  becomes  large,  MIPs  [7],  [8]  become  computationally
expensive.  CBF  methods  [9],  [10],  instead,  do  not  incorporate
actuator dynamics and may be computationally intense when solving
the  associated  quadratic  program  (QP)  in  which  the  goals  are
moving.

In  large  scale  2-D  multiagent  navigation  systems,  it  is  more
important for multiple agents to cooperate as a team than each agent
planing their own individual trajectory [1]. In this letter, we propose
a control  rule for multiagent systems navigation within a prescribed
time,  with  collision  avoidance,  actuator  saturation  and  dynamics,
computational simplicity, and with no individual path planner.

Related  work: Our  method  is  based  on  extending  Gauss’s
principle of least constraint (GPLC). The original GPLC [11], along
with its equivalency, the Udwadia-Kalaba (U-K) equations [12], has
been employed in the control of small scale multiagent systems [13].
However, both the original GPLC and the U-K equations are unable
to  assimilate  inequality  constraints,  actuator  saturation,  or  actuator
dynamics  and  are  not  applicable  for  large  scale  multiagent  systems
control.

GPLC  has  been  recently  extended  by  allowing  for  inequality

constraints,  actuator  saturation  and  dynamics  and  utilized  in  the
centralized control  of  2-D multiagent  navigation systems [14],  [15].
The  centralized  controls  proposed  in  [14]  and  [15]  formulate
constraints in terms of scalar Euclidean distances and vector relative
distances,  respectively.  These  formulations,  however,  cannot  allow
agents  to  follow  a  guiding  virtual  leader  that  possesses  high-speed,
high-curvature  trajectories.  Moreover,  their  computational  comple-
xities  are  approximately  cubically  scaled  in  the  number  of  agents,
making  them  not  suitable  for  controlling  large  scale  multiagent
systems.

In  the  following,  we  first  lay  out  foundations  for  a  decentralized
control scheme based on a Lagrangian viewpoint of GPLC. We then
develop  a  decentralized  multiagent  navigation  control  where
constraints  are  decomposed  along  different  dimensions  and
partitioned  between  colliding  agents.  Next,  we  present  and  discuss
numerical results for navigating hundreds of agents, followed by the
conclusions and future work.

q(t) ∈ RNq

M ∈ RNq×Nq

{g(q, t) = c} ∈ RNg

Gauss’s  principle  of  least  constraint  (GPLC): Consider  a
mechanical system with generalized coordinate positions 
and  with  symmetric  positive  definite  inertia  matrix .
Assume that at any time instant the system is subjected to the set of
active  holonomic  constraints ,  where c  denotes
constant  thresholds.  By  double  differentiating  with  respect  to  time,
these  active  constraints  become linear  in  the  generalized  coordinate
accelerations,
 

d2

dt2 g(q, t) =
∂g
∂q

q̈+
d
dt

(
∂g
∂q

)
q̇+

d
dt

(
∂g
∂t

)
= 0 (1)

which can be compactly expressed as
 

A(q, t) q̈ = b(q, q̇, t) (2)
A ∈ RNg×Nqwhere  is the constraint Jacobian matrix.

L = T −V
T = q̇T Mq̇/2

L̄ = L−λT (g− c) λ ∈ RNg

The  system  Lagrangian  can  be  defined  as ,  where
 denotes  the  kinetic  energy,  and V  denotes  the

potential energy depending only on q.  L  may be augmented without
changing its value as , where  contains the
Lagrange multipliers associated with g.

L̄Applying  Euler-Lagrange  equations  to ,  we  obtain  the
constrained equations of motion [15]
 

Mq̈− f(q)+ATλ = 0 (3)
f(q) = −(∂V/∂q)Twhere  are  the  nonconstraint  forces  due  to  a

conservative  potential V .  Hence,  we  can  obtain  the  constrained
system dynamics by adjoining (3) and (2)
 [

M AT

A 0

] [ ..
q
λ

]
=

[
f
b

]
(4)

fc ≜ −ATλwhere 0  denotes  a  zero  matrix.  represents  the  control
actions  enforcing  the  constraints.  In  the  context  of  multiagent
navigation  systems  studied  herein,  system  (4)  equates  the  GPLC
Karush-Kuhn-Tucker  (KKT)  system  in  [14]  which  is  derived  from
Newton’s second law.

g = c g̈ = 0
g(0) = c ġ(0) = 0

Active  constraint  stabilization: In  finite-precision  numerical
integration,  the  accumulated  numerical  errors  prohibit  the
enforcement  of  given   (i.e.,  (2))  and  the  initial
conditions,  and  .  Moreover,  the  state  trajectories
may  depart  from  some  constraint  due  to  any  actuator  saturation  or
dynamics.  In  GPLC  approaches,  the  dynamics  of  active  constraints
provide  the  command  control  actions,  and  the  constraint  errors  are
asymptotically stabilized to the constant thresholds c by Baumgarte’s
stabilization [16]
 

g̈+2ζωġ+ω2(g− c) = 0 (5)
g ∈ g

c ∈ c
where  is any active constraint with the corresponding threshold

.  Imposing  the  second-order  dynamics  (5)  to  all  active
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constraints g  (with  individual  constraint  taking  possibly  different
values of ω and ζ) and expressing them in a compact manner, we get
 

A(q, t) q̈ = b̂(q, q̇, t). (6)
b̂Compared to b  in (2),  contains terms involving ω  and ζ ,  which

may be respectively regarded as the natural frequency and damping
ratio of  constraint  oscillators g  and  thus  may  be  interpreted  as
control  parameters.  Hence,  system  (4)  incorporated  with  the
stabilized constraint dynamics (6) becomes
 [

M AT

A 0

] [ ..
q
λ

]
=

[
f
b̂

]
. (7)

Ng > Nq
Regularization: When  maneuvering  a  large  number  of  agents, A

may be a tall matrix, i.e., . In addition, A may be degenerate
due  to  some  constraints  being  linearly  dependent  at  some  time
instants. In this study, we regularize system (7) as [14]
 [

M AT

A −αI

] [ ..
q
λ

]
=

[
f
b̂

]
(8)

0 < α≪minΛ(M)

minΛ(M)

where I  denotes  an  identity  matrix,  and  is  the
regularization  factor  that  guarantees  the  solution  uniqueness,  where

 is the minimum eigenvalue of M.
Proposition 1: The 2-by-2 block matrix in (8) is nonsingular.

M−1

S ≜ αI+AM−1AT

α > 0 ∃x , 0 Sx =
−Sx = 0 0 = xT Sx = αxT x + xT AM−1AT x = αxT x+
(AT x)T M−1(AT x) αxT x > 0 (AT x)T M−1(AT x) ≥ 0

AT x = 0
0 = xT Sx > 0 −S

Proof:  Since M  is  positive  definite  and  thus  nonsingular, 
exists  and  is  also  positive  definite.  Define ,
where . Suppose that S is singular, then  such that 

.  Hence, 
.  But ,  with

equality  holding  only  for  (i.e.,  A  being  singular).  Thus
, a contradiction. Hence, S is nonsingular, as is . By

Proposition  3.9.7  of  [17],  the  2-by-2  block  matrix  in  (8)  is
nonsingular, regardless of the rank of A being full or deficient. ■

γ (g− c) = 0
γ ġ = 0 γ g̈ = 0

⇔ γAq̈′ = γb
λ′

An  equivalent  system  with  scaled  constraints: If  the  system  is
subjected to a set of scaled active constraints ,  where γ
is  a  nonzero  scalar,  then  we  have  and  
( ).  We  thus  obtain  a  new  augmented  Lagrangian  by
adjoining the scaled constraints with multipliers  and solve the new
constrained  dynamics  analogously  by  applying  Euler-Lagrange
equations, active constraint stabilization, and regularization to arrive
upon
 [

M γAT

γA −α′I

] [ ..
q′

λ′

]
=

[
f
γb̂

]
. (9)

α′ = γ2α γ , 0
q̈ = q̈′

Proposition 2: Under , , system (9) yields the same
constrained accelerations as those of (8), i.e., .

Proof:  By Proposition 1,  the  block coefficient  matrices  in  (8)  and
(9)  are  nonsingular.  According  to  Proposition  3.9.7  of  [17],  the
inverse of the coefficient matrix in (8) is
 [

M−1−M−1AT S−1AM−1 M−1AT S−1

S−1AM−1 −S−1

]
∆
=

[
H1 H2
H3 H4

]
and the inverse of the coefficient matrix in (9) is
 [

H1 γ−1H2
γ−1H3 γ−2H4

]
.

q̈′=H1f +γ−1H2 γb̂=H1f +H2b̂ = q̈ λ′ = γ−1H3f+
γ−2H4 γb̂ = γ−1(H3f +H4b̂) = γ−1λ

Thus, , and 
. ■

Remark 1: Proposition 2 holds for any two linear matrix equations
with  a  partitioned  2-by-2  block  coefficient  matrix  that  has  square,
nonsingular block matrices on its main diagonal and that the top left
block  of  the  coefficient  matrix  and  its  Schur  complement  are  both
nonsingular.

pi(t) = [xi(t) yi(t)]T ∈ R2 mi
κi = [κx

i κ
y
i ]T ∈ R2

κx
i = κ

y
i = κi

Problem statement: The problem at hand is a swarm of N agents
navigating  in  a  2-D  plane.  Agent i  possesses  the  position

 with a constant mass  and is subjected
to an actuator saturation bound . In this work, we
investigate a homogeneous swarm and thus assume .

In the following, the superscripts u, l, x, and y denote upper branch,
lower  branch, X  component,  and Y  component,  respectively,  while
the subscripts i, j, and 0 denote the indices of agent i, agent j, and the
virtual leader,  respectively. The subscripts and superscripts are used
where it is germane to the corresponding quantity.

Assume that the i-th agent has unconstrained dynamics
 [

mi 0
0 mi

] [
ẍi
ÿi

]
=

[
f x
i

f y
i

]
⇔Mi

..
pi = fi (10)

f x
i f y

iwhere  and   contain  all  nonconstraint  conservative  forces
exerted on agent i along the X and Y axes, respectively.

p0(t) = [x0(t) y0(t)]T ∈ R2
Let the swarm be forced to approach a virtual leader with position

.  The  forces  attempt  to  satisfy  the  path
constraints
 

gi0 = [gx
i0 gy

i0]T ≜ ∆pi0 = pi−p0 = 0. (11)
{i, j}

∀i, j ∈ {1, . . . ,N}
{i, j}

ri j = r ji = ri+ r j = [rx
i j ry

i j]
T ∈ R2

All  adjacent  agent  pairs  must  avoid  collisions,
. We enclose each agent within a virtual rectangular

buffer so that for agent pair  the buffer size between them along
the X  and  Y  axes  is .  Mathema-
tically, the collision constraints are
 

gi j = [gx
i j gy

i j]
T ≜ |∆pi j| = |pi−p j| ≥ ri j (12)

| · |where  denotes  absolute  value,  and  the  inequality  sign  denotes
componentwise comparison.

pi gu
i j = [gxu

i j gyu
i j ]T ≜ {∆pi j ≤ −ri j}

gl
i j = [gxl

i j gyl
i j]

T ≜ {∆p ji ≤ −ri j}
gi j {−ri j < ∆pi j ≤ 0} {0 < ∆pi j <

ri j}

Constraints  (12)  can  be  decomposed  into  two  branches:  an  upper
and a lower bound on , i.e.,  and

.  Thus,  the  upper  and lower  branch
of active  for agent i become  and 

, respectively.

gi0
{i, j}

gx
i j gy

i j
gi0 gu

i j gl
i j

During  the  natural  evolution  of  the  multiagent  swarm  dynamics,
equality  path  constraints  (11)  and  some  inequality  collision
constraints  (12)  become  active.  In  fact,  in  GPLC  control,  control
actions  result  only  from  the  time-varying  set  of  active  constraints.
Likewise,  agent i  is  not exactly tracking the leader if  is  nonzero
along  at  least  one  dimension,  while  the  pair  is  in  danger  of
collision  when  both  and   are  activated.  Taking  the  first-  and
second-order time derivative of , , and , respectively, we can
stabilize the imposed second-order dynamics of all active constraints
as in (5).

{i, j}
pi j

ṗi j p̈i = − p̈ j
g̈u

i j = 0⇔
2 p̈i = 0 g̈l

i j = 0⇔−2 p̈i = 0

Constraint  partitioning: For  the  two  types  of  constraints
considered in this study, each path constraint is independent from the
coordinates  of  other  agents,  while  each  collision  constraint  couples
the  dynamics  of  pairwise  agents  in  collision.  Upon  the  onset  of
colliding buffers between agent pair , we assume that each agent
only has access to the relative positions  and the relative velocities

 with  respect  to  its  neighbors  and  that  (due  to  the
homogeneity  assumption  introduced  earlier).  Hence, 

 and  .  Equivalently,  this  indicates  that
the collision constraint in the decentralized framework is scaled by a
factor  of  2  compared  to  that  of  centralized  frameworks  [14],  [15].
According to Proposition 2 and Remark 1, the constrained dynamics
for agent i in the multiagent navigation system can be formulated by
(9)
 

Mi I2×2 2
(
Aac

i

)T

I2×2 −αiI 02×Nac
g

2Aac
i 0Nac

g ×2 −4αiI



..
pi

λap
i

λac
i

 =


fi

b̂ap
i

2b̂ac
i

 (13)

I2×2
Aac

i Aac
i

Ai = [I2×2 2(Aac
i )T ]T

b̂i = [(b̂ap
i )T 2(b̂ac

i )T ]T λi = [(λap
i )T (λac

i )T ]T

where  corresponds to active path constraints (11), and each row
of  represents  an active  collision constraint.  Note  that 
contains only 1, –1, and 0 as entries. We define ,

, and .
p̈i = −p̈ j ṗi = −ṗ jNote  that  the  assumption  needs  not  indicate 
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pi = −p j pi p j
p̈i p̈ j pi(0) ṗi(0) p j(0)
ṗ j(0) t = 0 gi j

pi p j
ωi j ζi j ri j

and , since the trajectories of  and  depend not only on
 and  but also on the initial conditions , , ,  and

,  where  the  time  is  the  time  instant  when  becomes
active.  Moreover,  the  dynamics  of  other  active  constraints  will  also
contribute to the trajectories of  and . Also note that the collision
control parameters , , and  can be chosen differently (and/or
vary  dynamically)  for  upper/lower  branch, X/Y  coordinate,  and/or
heterogeneous agents, as the problem at hand dictates.

fc
i = −AT

i λi
Mi Ai b̂i

λi

In the 2-D multiagent system examined here, the number of active
constraints  for  one  agent  may  range  from  2  path  constraints  in  a
collision-free  configuration  to  around  8  collision  constraints  plus  2
path  constraints  in  a  typical  configuration  to  around  16  collision
constraints  plus  2  path  constraints  in  an  extremely  dense  configu-
ration. The command control law  is decentralized since
the  information  to  populate , ,  and  is  available  to  agent i
from  the  measurements  of  its  own  motion  relative  to  its  neighbors
and the virtual leader. The feedback control law reduces to solving a
linear  matrix  equation  (with  a  dimension  of  4  in  a  collision-free
configuration to around 12 in a typical configuration to around 20 in
an extremely dense configuration, depending on the number of active
collision constraints) for  without iteration at each time instant. The
feedback control law is therefore nonlinear and discontinuous in the
states and is computationally simple as compared to solving an MIP
or QP.

f s
i =min{max{fc

i , −κi}, κi }
ḟa
i = (f s

i − fa
i )/τi f s

i
fa
i 0.05 s ⪅ τi ⪅ 1.0 s

Actuator  saturation  and dynamics:  Assume that  the  actuator  of
agent i  is  saturated  as  and  responds  to
first-order  dynamics, ,  where  is  the  saturated
control force,  is the actual control force, and 
is a time constant.

fa
i

ˆ̈pi =M−1
i (fi+ fa

i )
ṗi ˆ̈pi ḟa

i

With  the  saturated  and  delayed  actuator  force ,  the  actual
acceleration  is  recomputed  by .  The  state
derivatives , ,  and  are  then used in  numerical  integration for
agent i.

mi = 1 g = 9.8 κi = 5mig rx
i j = ry

i j = 40 ωx
i0 = ω

y
i0 =

1 ωx
i j = ω

y
i j = 5 ζx

i0 = ζ
y
i0 = 0.9 ζx

i j = ζ
y
i j = 5 4αi =

mi/104 τi = 0.2

∼ 315

Numerical  experiments:  The  proposed  method  is  numerically
implemented in MATLAB on a Windows desktop with an Intel Xeon
E5-2680v3 CPU at 2.50 GHz. The parameters used in this study are:

 kg,  m/s2,  N,  m, 
 rad/s,   rad/s,  , , 

,  s.  The  fourth-order  Runge-Kutta  method  with  a
constant  time  step  of  0.005  s  is  used  as  the  time  integrator.  The
virtual  leader  executes  a  figure-eight  trajectory  about  5.25  km  in
length within a 60-second simulation window (average speed 
km/h). The leader’s path is described as
 

x0(t) =
Lcos(2πt/T )

1+ sin(2πt/T ) sin(2πt/T )

y0(t) =
Lsin(2πt/T )cos(2πt/T )

1+ sin(2πt/T ) sin(2πt/T )
.

(14)

xi(0) ∈ [600,1400]
yi(0) ∈ [−400,400] ∀i ∈ {1, . . . ,N}

In this study, we use L = 1 km, T = 60 s, and N = 200. All agents start
from  randomly  generated  initial  positions,  and

, , with zero initial velocities, and
the conservative forces are assumed to be zero for all time.

Figs. 1–3 respectively  illustrate  the  trajectories,  the  minimum
active  collision  distances,  and  the  extreme  saturated  and  actual
control  actions  for  200  agents  following  the  virtual  leader.  The
corresponding  animation  can  be  found  online1.  The  chosen  control
parameters indicate that the path constraints are underdamped with a
smaller  natural  frequency  while  the  collision  constraints  are
overdamped with a larger natural frequency and thus stronger control
actions.

min∥∆pi j∥

We  can  observe  from Fig. 1  that  all  agents  execute  smooth
trajectories by reacting purely to the natural evolution of constrained
dynamics (13). In Fig. 2, the minimum pairwise distance 
  
1 https://youtu.be/C0_q3lxDYyY
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Fig. 1. Trajectories  of  200  agents  swarming  with  a  virtual  leader  moving
along  a  figure-eight  path.  The  black  dashed  line  denotes  the  virtual  leader’s
path around 5.25-km long executed within 60 s (average speed  km/h).
The colored solid lines are the paths of all  agents,  with * and × respectively
denoting  the  start  and  end  positions.  Each  agent’s  decentralized  navigation
control law results from reacting purely to its constrained dynamics (13).
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Fig. 2. The  minimum  relative  distance  over  all  active  colliding  agent  pairs
along  the X  axis,  the Y  axis,  and  between  the  centroids,  respectively.  The
minimum pairwise distance starts from 3.26 m and is stabilized to around 10
m after the first 5 seconds of initial transients.
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Fig. 3. The  maximum  and  minimum  saturated  and  actual  control  forces, 
and , over all agents.  precedes  due to the first-order actuator dynamics.
The green dashed lines denote the actuator saturation bounds.
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min∥∆pi j∥
t ∈ [0,5]

starts from 3.26 m and is stabilized to around 10 m after the first 5-
second of initial transients, during which the actual control forces are
almost  saturated,  as  shown  in Fig. 3 .  This  means  that  no  actual
interagent collisions occurred and that the fluctuating  in

 s results from the lack of enough actuation to enforce both
path  and  active  collision  constraints.  Note  that  the  virtual  leader’s
path has high speeds and high curvatures, and thus, it is an aggressive
and challenging maneuver that the centralized controls developed in
[14] and [15] fail to perform stably. This explains the generally large
extreme  control  actions  and  even  some  occurrences  of  control
saturation in Fig. 3.

O(N3)

In the proposed decentralized framework, each agent solves a KKT
system of dimension up to around 20, regardless of the number of the
agents  in  the  swarm, N .  In  the  centralized  methods  [14],  [15],  the
corresponding KKT system is of dimension around 11 times N and of
dimension  around 20  times N ,  respectively.  Since  solving  a  linear
matrix  equation  involves  operations,  the  centralized
approaches  [14],  [15]  are  more  computationally  intensive  than  the
proposed decentralized scheme as N becomes large.

O(1/N3)

Conclusions  and  future  work: This  letter  extends  GPLC  to
address the decentralized control of multiagent navigation systems in
order  to  guide  each agent  toward  a  moving virtual  leader  and away
from  potential  collisions.  This  work  defines  constraints  in  terms  of
decomposed  relative  distances  and  partitions  collision  constraints
between  colliding  agent  pairs.  This  method  has  no  agentwise  path
planner and is heuristic-free, decentralized, nonlinear, discontinuous,
and  computationally  simple.  The  proposed  decentralized  scheme  to
safely  maneuver  an N -agent  swarm  requires  only  of  the
computational  operations  of  those  required  by  centralized  GPLC
control approaches.

Future work along this line of research include the examination of
the  proposed  framework  subjected  to  exogenous  disturbances,
modelling  errors,  and  state  estimation  errors,  which  are  straight-
forward  endeavors  thanks  to  the  simplicity  of  the  mathematical
structure of the present approach.
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