2022 American Control Conference (ACC)
Atlanta, USA, June 8-10, 2022

Unified Position-Attitude Control of A Nonlinear Quadrotor Swarm

Boyang Zhang' and Henri P. Gavin'

Abstract—In this paper, we propose a novel nonlinear feed-
back control law to maneuver a swarm of nonlinear quadro-
tors with interagent collision avoidance. In contrast to the
predominant hierarchical control architectures and dynamics
linearization in controller synthesis in the literature, we control
the position and attitude of each drone simultaneously in one
unified step, with no dynamics linearization involved at any
stage. Our method is based on generalizations of Gauss’s prin-
ciple of least constraint that allows higher order constrained
dynamics and that identifies, stabilizes, and incorporates the
time-varying sets of active constraints. The active constraints
are asymptotically stabilized to the controlled space according
to a generalized constraint stabilization to provide command
control actions. Numerical results are provided for a swarm
of up to 80 nonlinear quadrotors executing aggressive flights
and for eight nonlinear drones swapping positions on a circle,
attesting to the efficacy and efficiency of the proposed scheme.

I. INTRODUCTION

Over the past decade, quadrotor swarms have been widely
adopted in applications such as inspection and transportation
due to their agile and cooperative maneuverability [1]. Due
to their nonlinearity, underactuation, and limited battery
life, efficient control of a nonlinear quadrotor swarm with
collision avoidance remains an open field [2]. According to a
recent survey of over 800 papers [3], the majority of methods
on quadrotors control employ a hierarchical framework, in
which the position and attitude are separately controlled so
that the inner loop attitude dynamics is assumed stable and is
neglected when designing the outer loop position controller.
Such decomposed control of the inherent coupling between
quadrotors’ translation and rotation may be questionable
when subjected to constraint drifts caused by numerical
integration errors, unmodeled dynamics, exogenous distur-
bances, or actuator delays. Moreover, approximately 400
papers adopt linearized quadrotor dynamics that are applied
to only small rolls and pitches [3]. This linearization may be
void in handling scenarios where aggressive maneuvers are
demanded to avoid collisions within a swarm.

Differential flatness based methods [4], [5], [6] derive
quadrotors tracking control laws by exploiting four flat
outputs (the three-dimensional (3-D) positions of the center
of mass and the yaw angle) in a hierarchical framework. In
general, these approaches require the knowledge of the refer-
ence trajectories of the flat outputs and their derivatives, and
angular velocities, to compute control actions that minimize
the tracking errors on linear positions and velocities, rotation
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matrix, and angular velocities. Moreover, collision avoidance
is handled by geometric sets [4], by integer constraints [5],
or by barrier certificates [6].

To the best of our knowledge, little work has been done
on unifying the position and attitude controllers for nonlinear
quadrotors. These unified position-attitude control methods
include nonlinear model predictive control [7] and sequential
linear quadratic control [8]. However, the method in [7]
requires the iterative solution of an optimization problem
and adopts the small angle assumption for the quadrotor’s
dynamics, while the approach in [8] involves sequential
linearization of the quadrotor dynamics around the trajectory
and an iterative solution of a subproblem that has no global
optimum guarantee.

In this paper, we propose a unified position-attitude control
for a nonlinear quadrotor swarm by noting that a quadrotor’s
translational and rotational dynamics is fully coupled at the
level of snap and angular acceleration. Our method is based
on generalizing Gauss’s principle of least constraint (GPLC)
[9], which is mathematically equivalent to Udwadia-Kalaba
(U-K) equations [10]. The GPLC/U-K approaches have been
used to analytically describe the constrained dynamics of
mechanical systems [11]. However, these methods apply only
to second order dynamical systems that are subjected to
equality constraints [12].

To our best knowledge, for the first time GPLC is gen-
eralized for equality-constrained, higher order dynamical
systems and a globally-optimal, nonlinear, unified position-
attitude control is developed in [13] for a single nonlinear
quadrotor tracking that does not involve any dynamics lin-
earization. In this paper, we extend the work in [13] to con-
trol multiple nonlinear quadrotors by introducing inequality
constraint and regularization for collision avoidance.

This paper is organized as follows. Section II presents
the generalized GPLC control for a general nonlinear dy-
namical system. Then, a nonlinear unified position-attitude
controller is constructed for a nonlinear quadrotor swarm in
Section III. Next, Section IV provides numerical results for a
multi-quadrotor swarm flight and for eight drones resolving
collisions, followed by the contributions and future work in
Section V.

II. CONSTRAINED HIGHER ORDER SYSTEMS CONTROL

A. Generalized Gauss’s Principle of Least Constraint

1) Second Order Systems: Consider a second order sys-
tem subject to a set of C' equality constraints, g(q,t) = c, on
the coordinate positions q € RMa, where ¢ € RC denotes
constant thresholds. The constraints on q require that the
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coordinate accelerations q satisfy the differential equations

d? _Og.  d (0g\. d (0g\ _
dt2g(q7t)_8qq+dt<8q>q+dt<8t)_0’ (D

which give rise to a constraint (control) force f.. Thus, the
dynamics of the controlled system can be expressed by a
system of N, second order ordinary differential equations
(ODEs), M(q,t)q = f(q,q,t) = fuc + f., where M is
the symmetric positive definite (SPD) mass matrix, and ;.
contains all nonconstraint (noncontrol) forces. Equation (1)
is linear in q and may be compactly written as A(q,t) § =
b(q, q,t), where

9g1(ayt) 9g1(a,t)
5 da T dawg
g . .
A(q,t) === : :
! 9gc(ayt) dgc (a,t)
Bar .. D,

We note that the unconstrained minimization
1. .. ..
mqin quMq —f.4 2)

is solved by the unconstrained accelerations qy £ M'f,.,
and that imposing (1) to (2) is equivalent to

g min 5" MG — £1,6 -+ 51 Méu + X' (AdG—b) . @)
whose solution is attained by the Karush-Kuhn-Tucker
(KKT) conditions

M AT||q fic

Al e
where 0 denotes a zero matrix, and f, £ —A™\ contains
the control actions associated with enforcing (1). Equation
(3) is the original GPLC (OGPLC) [9], which states that the
constrained accelerations ¢ minimize a quadratic form of the
difference between q and q,.

2) Higher Order Systems: The dynamics of a constrained
system may involve higher order derivatives of coordinate
positions, or it may not be linear in the second order
derivatives of coordinate positions but is linear in higher
order derivatives.

In this section, we generalize OGPLC and apply it to a
controlled higher order system whose dynamics is described
by N, ODEs of various orders, Mx = f,. + f., where
each ODE is linear in its highest order derivatives, which
are contained in x. The vector X can contain derivatives of
different orders. M, f,., and f. are respectively the SPD
generalized mass matrix, generalized noncontrol forces, and
generalized control forces that correspond to the higher order
system and cannot involve derivatives included in x.

The controlled space for the system is defined based
on the equality constraints g.q, = Ccq and the inequality
constraints gi, < cin. Both goq and gi, are functions of the
states and the state derivatives up to (but not including) the
corresponding orders in x. At each time instant, the active
constraint set is identified as the collection of all equality
constraints and all inequality constraints that exceed their

corresponding thresholds. This set of C' active constraints is
treated as equality constraints g = c¢ and varies over time
according to the natural evolution of system dynamics. The
active constraints may be differentiated ~ times with respect
to time such that the differentiated form is linear in X. By
imposing these C' linear differential equations Ax = b, the
constrained highest order derivatives X% solves

max n;in %)’(TMX -1 %+ %X;MXU +AT(Ax—Db), (5
which we term the generalized GPLC (GGPLC), since it as-
sumes an analogous form to that of OGPLC (3). The GGPLC
minimizes a quadratic form of the difference between x and
the unconstrained highest order derivatives x,,, subjected to
differentiated constraints. GGPLC results in a KKT system

M AT||x fie
RO e
where f, £ —~AT\ arises from enforcing the equality con-
straints Ax = b and thus may be regarded as command
control actions. Hence, Equation (6) represents a nonlinear
feedback control law for the higher order dynamical system
to obey the constraints at a differentiated level.
Note that in this and the following sections, the variables
M, g, c, A, b, A\, Ny, C, f,,c, and f. correspond to a system

of higher order ODEs, while these variables all correspond
to a system of second order ODEs in Section II-A.1.

B. Existence and Uniqueness of the Solution of KKT Systems

Proposition 1: The KKT system (6) is singular if and only
if either (a) AT has a nontrivial null space, or (b) the null
space of M intersects the null space of A.

Proof: See Proposition 1 in [13]. [ ]

C. Generalized Constraint Stabilization
In reality, the imposition of the differentiated constraints
d"g
dtr
does not guarantee the satisfaction of the original constraints
g = c due to constraint drift caused by inconsistent initial-
ization, numerical integration errors, exogenous forces, or

unmodeled dynamics. To stabilize constraint dynamics, we
enforce asymptotically stable dynamics upon g(t)

—Ax-b=0 7)

r—1

dtg dig
+§;@Eg+ﬁdg—d=0, (8)

dtr

where (§; are called Baumgarte coefficients and are selected
to asymptotically stabilize g(¢). Equation (8) is a gener-
alization of Baumgarte’s stabilization [12] to higher order
constraint dynamics. Substituting (8) into (7), we get

k—1 :

.- d

Ax=b2b-) A2 —f(g—c). O
i=1

For even values of x, the distinct eigenvalues of (8) can be
prescribed in terms of natural frequencies w; and damping

ratios G, i = 1,...,K/2, 04,6; = —Cw; + wi/¢? — 1.
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Then, the Baumgarte coefficients of any even order x can
be directly obtained from the companion matrix of (8)

0 1 0 e 0
0 0 1 cee 0
— VAV, (10)
-Bo B B —Br-1

where A is a diagonal matrix of the prescribed eigenvalue

pairs, o; and &;, and the corresponding columns of V are

Lo;o? ... of " and [1 &; 67 ... a7 1" [14].
Imposing the stabilized constraints (9) instead of (7) in

(6), we have
M AT [x]  |fac
A O||A] |b|’
which we term the GGPLC KKT system with stabilization.
Note that any constraint violation is guaranteed to con-

verge to zero with the dynamics specified by w; and (;, since
the eigenvalues of (8) are user-prescribed via (10).

(1)

D. Regularization

In the following application of GGPLC to control a non-
linear quadrotor swarm with collision avoidance, A may be a
tall matrix under some scenarios, i.e., C' > N. Furthermore,
some active constraints may be linearly dependent at some
time instants. Hence, the system (11) is regularized so that
the regularized KKT matrix is full rank,

M A" [x]  [fuc

AN
where I is an identity matrix, 0 < o < minA(M) is
the regularization factor, where min A(M) is the minimum
eigenvalue of M, and o = 0 yields the original problem
(11). The solution of (11) is uniquely approximated by that
of (12).

III. UNIFIED POSITION-ATTITUDE CONTROL FOR A
CONSTRAINED NONLINEAR QUADROTOR SWARM

12)

A. Constrained Dynamics

1) A Generic Quadrotor: A quadrotor has six degrees
of freedom and four control inputs generated from the four
spinning propellers. The inertial frame is fixed to the ground
with positive Z axis upwards, while the body frame is fixed
at the quadrotor’s principle axes with the thrust force acting
in the positive body Z axis. In this study, the rotation matrix
from the body frame to the inertial frame is parameterized by
ZYX Euler angles, roll ¢ € [-, 7], pitch 0 € (-7/2,7/2),
and yaw ¢ € [-7, 7],

Xp coch  cypsbsgp — sep  csbed + syse
R 2 |yL| = |s¢cld sishsg + ciped  sppsfeg — cpso |
Zh —sf clso clco
(13)

where s and c represent sine and cosine, respectively. The
Euler angle rates ®g are calculated by

where t denotes tangent and wp = [p ¢ 7|7 € R3 are the
angular velocities expressed in the body frame.

The quadrotor is assumed to be a rigid body with dynamics
formulated by the Newton-Euler equations,

15)
(16)

mpr = fiRez —mges = fizg —mges ,

J(.«'JB :TB—L:)BJOJB N

where m is the total mass, g is the gravitational acceleration,
p1 = [z y z|" are the position coordinates of the center of
mass (CoM) expressed in the inertial frame, eg = [0 0 1], f;
is the magnitude of the total thrust force, J = diag(I, I, 1)
is a diagonal matrix of the principal moments of inertia,
T8 = [m1 72 73]" are the control torques expressed in
the body frame, and wpg is the skew-symmetric matrix of
wp. The inputs in (15) and (16) are f; and 7, and they
can be uniquely determined by the spinning speeds of four
propellers [5].

The jerk and snap dynamics in the inertial frame are
respectively

mPr = fizp + fiRwpes , (17
mP1 = fizp + 2fRdpes + fi(RwZes + Rwpes) (18)
by differentiating (15) and by noting that R = R&g.

Thus, the equations of motion for a nonlinear quadrotor
with fully coupled translation and rotation are (18) and (16),

)

{mlg M*] [p1:| _ [fchB + thR‘;JBeia + fiRwEes

0333 J | |wB 8 — wpJwp
(19)
where the term
M*wB £ [ftyB 7ftXB 0] [p ] T]T = —ftR(jJBeg

achieves the coupling of the rotational dynamics to the
translational dynamics according to (18). f; and ft are
treated as states, and ft and 7p are the control inputs that
arise when a set of active constraints is associated with the
quadrotor.

By noting that the translational and rotational dynamics are
fully coupled in (19), we eliminate p and ¢ by substituting
p=[n— (. —1,)qr]/I; and ¢ = [r2 — (I, — I.)pr]/I,
from (16) into (19) to obtain

[mIzs 03><1:| l:'ﬁ.1:| _ [ fut ]
01><3 Iz 7" (IJ, _Iy)pq
4 |ZB -fivs/L:  fixs/l, Osx1| [ f
0 0 0 1 |’
where £y, = (I, + I. — I,)) fopr /I, + 2fealxp + [(Io + . —
L) feqr/ L — 2 fiplys — [fo(p* + ¢*)]zB. Note that xg, yg,
and zp are orthonormal column vectors in R3. As long as the

rotors rotate, f; is nonzero. The remaining coordinates, x, y,
z, and r, become fully controllable in a reduced configuration

(20)

' ¢ 1 sptd coth space, with the input influence matrix being full rank. We
Op=|0| =Ewp= |0 co -s¢ | wp, (14) call the quadrotor model (20) a fourth order system since the
0 0 s¢/cd co/ch highest order in the derivatives x = [P 7|7 € R* is four.
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2) An N-quadrotor Swarm: Equation (20) can be com-
pactly written as M;%x; = fuo; + foi = fu; + Byu; for
quadrotor ¢, Vi = 1,..., N. Hence, the constrained dynamics
of an N-quadrotor swarm can be expressed as

Mx = f,. +f. £ f,c + Bu , 21)

where M = diag(M;) € R*>*4N js a block diagonal
matrix, X = [... %, ...]” € R*" contains Pt and 7 for
all agents, B = diag(B;) € R*N*4VN i5 a block diagonal
matrix, and u € R*N contains f; and 7 for all agents.

B. Constraint Formulation

The N-drone swarm may be divided into K subswarms
to conduct cooperative tasks. Each subswarm is assigned
a guiding virtual leader with position coordinates p(t) =
[Zr(t) J(t) Zx(t)]” € R? and has a number of Ny agents,
k =1,...,K, such that Zkl,(lek = N. We define p =
[...pl ... eR3¥N, pl =[z; y; z:) ER3, Vi=1,...,N.
Each agent is constrained to track its virtual leader p(t)
along three inertial axes. Mathematically, for agent ¢ this is
expressed as three equality constraints

gik = 9% 9, 95)" = Apik =Pi — Pr = 03x1 , (22)
where the superscripts x, y, and z denote the X, Y, and Z
coordinate in the inertial frame, respectively.

Furthermore, the agent pair {i,j} must prevent collision
in 3-D for all neighboring agents during a flight. This is
expressed as three inequality constraints

gij = 955 9; 951" = |Apis| = [pi —pj| > 1ij . (23)
where | - | denotes absolute value, and the inequality sign
denotes componentwise comparison. g;; are active when the
CoM of agents 7 and j are inside the virtual cuboid with
edge lengths ri; = [r}; 7, rf;]", ie., |Api;| < ri; holds.
The constant control parameters r;; are selected so that the
minimum pairwise distance among agents is always greater
than the sum of the actual half-lengths of any pair of colliding
agents. Note that (23) can be decomposed into an upper and
a lower branch

(24)
(25)

A

g;lj = [g?ju gzy;l gzz}l]T = Apy; < -1y
1 1 1 1 A

8ij = [gi(] QZJ gfjr = Apj; < -1y

where the superscripts u and 1 denote upper and lower,
respectively.

C. Constraint Stabilization

Whether the trio of the inequality constraints, g;; €
95 95, g3 € g} gly; |, and g; € [g73" gZj], is included in or
excluded from the active constraint set is determined by com-
paring the relative distances |Ap;;| to their corresponding
thresholds r;; componentwise at each time step. This time-
varying set of active inequality constraints along with the

equality tracking constraints is differentiated as (7), stabilized

as (9), and incorporated into (12) to give rise to GGPLC
controls. Hence, the active constraints can be stabilized as

€ = —BiEi — BSgin — Bigin — Bogin 2 bl

B, = 858 — 58l — Brel — B5(Api; +riy) 2B
B = BSEL + B8 + Bigly + B5(Apy —riy) 2 Bi}(,%)
where the superscripts t and c respectively denote tracking
and collision.

D. Selection of Baumgarte Coefficients

The Baumgarte coefficients 3¢ and 3¢, 7 = 0, 1,2, 3, in the
fourth order constraint dynamics (26) are control parameters
in this unified position-attitude controller for a nonlinear
quadrotor swarm. During the natural evolution of constrained
system dynamics, the onset of an active constraint g leads to
initial conditions gi,, = ¢ (c is the threshold of the constraint)
and generically nonzero (problem dependent) ¢in, Gin, and
J'in, with higher order dynamics having a generally higher
initial value. Thus, an optimization problem that minimizes
the peak constraint position over time subject to nonzero
initial constraint conditions can be posed to find an optimal
set of Baumgarte coefficients,

minmax g(q,t) gn=2¢ Gn=1, Gin=2, Jin =3

wi,Gi t

s.t. |wi|min S |wz| S |wi|max and Ci,min S C’L S Ci,max
(27)

where the natural frequencies and damping ratios of the con-
straint dynamics are prescribed to lie within user-specified
ranges.

E. Regularized GGPLC KKT System with Stabilization

Equation (12) describes a nonlinear quadrotor swarm by
substituting constrained system dynamics (21) and constraint
dynamics (26) into (12). From (26), the generic row of A
for g, is [0 1 0], with the entry 1 on column 4i — 3, 4i — 2,
and 4¢ — 1 for g7}, gf’k, 9% respectively. The generic row
of A corresponding to g}; is [0 1 0 —1 0], with the entry 1
on column 4 — 3, 4t — 2, 4i — 1 and -1 on column 45 — 3,
45 —2, 45— 1 for gX', g}, gi}', respectively. The row of A
for gij is the opposite of the corresponding row for g;’.

Upon solving the matrix equation (12) at each time instant,
we associate —ATA with Bu in (21) to provide the controls
for all agents that enforce tracking and collision avoidance
along three inertial axes. Note that B is full rank in all
scenarios except for any drone with a zero f;. Hence, the
command control actions for all agents can be obtained
by u = -B'A"A. Then, p and ¢ for each drone can be
obtained by substituting the corresponding 7 and 75 in u
into (16). The actual inputs to a quadrotor generated by the
four propellers are (equivalently) f; and 75, where f; is a
state in the GGPLC control and is equal to double integrating
ft in u.

The constant-step fourth order Runge—Kutta method is
used for numerical integration, where each drone has 20

states: pr, pr. Pr, P1, Op, wg, fi, and f;.
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Y (m) X (m)

Fig. 1: 10 quadrotors track a virtual leader (black solid line) with three
snapshots (t = 2,9, 16 s) of the drones’ body frames. The square M, triangle
A, and cross X heads denote the positive body X, Y, and Z axes, respectively.
Each drone executes a sufficiently smooth path (a colored solid line) that
results from reacting purely to its constrained nonlinear dynamics. All agents
execute smooth motions and coordinate their motions with their neighbors
and the virtual leader after the initial stage. The corresponding animation
can be found online. !

IV. NUMERICAL EXAMPLES

The proposed GGPLC control for multiple nonlinear
quadrotors is verified by performing numerical simulations
with a constant time step At = 0.005 s in MATLAB on a
Windows desktop with a 2.50-GHz Intel Xeon E5-2680v3
CPU.

1) Single Swarming: In this example, we simulate a
swarm of homogeneous nonlinear quadrotors. The parame-
ters used are: m = 5 kg, g = 9.8 m/s?, 21, = 2, =1, =1
kg'm?, o = m/10%. The control parameters take the values
By = 97.409, B} = 125.02, BS = 59.851, B% = 12.667,
B§ = 1558.5, Y = 982.3, 85 = 233.73, B5 = 24.882, the
number of virtual leader is £k = 1, and r;; = 234;. Fig. 1
illustrates the trajectories of 10 nonlinear quadrotors guided
by a conical spiral virtual leader moving from (0,0,0) to
(2.5,—-8.5,8) for t € [0,12] s, during which the reference’s
first through fourth order time derivatives vary smoothly
from zero to zero. The virtual leader stays stationary at
(2.5,—8.5,8) for ¢t > 12 s. Each drone has all zero initial
states except the initial thrust f; = mg and the initial position
randomly drawn within a cube centered at the origin with
edges parallel to the axes and with an edge length of 7.

The snapshots of all drones’ body frames at ¢t = 2, 9,
and 16 s are also shown in Fig. 1. At the initial 5 s, all
drones react to the constrained quadrotor swarm dynamics in
a dynamic and nonuniform manner (snapshot at ¢t =2 s as a
representative illustration), as seen from the first 5 seconds in
Fig. 2. Due to the enforced constraint stabilization, the min-
imum relative distances over all active colliding drone pairs
asymptotically converge to the thresholds of the controlled
space. For t € (5,12] s, the swarm is self organized into
an equilibrium shape with all agents’ motions synchronized
(snapshot at t = 9 s as a representative illustration), where
the thrust axis (positive body Z axis) of each drone tilts
inwards the spiral at large roll and pitch angles, overcoming
the gravity and the centrifugal force. This stable swarm flight
stage (t € (5,12] s) can also be evidenced from stabilized
minimum relative distances in Fig. 2. When the reference

Thttps://youtu.be/ChReGTNA _g

bt
12

I
138

o

Minimum collision constraint distances (m)

Time (s)

Fig. 2: Minimum relative distances and its components along the three
inertial axes for all quadrotor pairs with active trio of collision avoidance
constraints. Such minimum relative distances along different directions are
stabilized closer to the corresponding thresholds.

X (m)

Y (m)

Fig. 3: 8 drones swap equally spaced positions (gray squares) on a circle of
radius 10 m on the X-Y plane (z = 0) with two snapshots (t = 0.4, 3 s) of
the drones’ body frames. The markers B, A, and X denote the positive bod:
X, Y, and Z axes, respectively. Each drone executes a sufficiently Smootﬁ
path (a colored solid line) that results from reacting purely to its constrained
nonlinear dynamics. The corresponding animation is available online. 2

is at rest after ¢t = 12 s, all drones remain horizontal
hover (snapshot at ¢ = 16 s as a representative illustration)
with control thrusts counterbalancing gravity and with zero
control torques.

2) Swapping Positions: In this example, the control pa-
rameters are chosen as 68 = 492.9803, 5} = 999.0483,
BS = 399.5673, 8% = 44.9958, 35 = 97.409, 5§ = 117.49,
BS = 55.057, B = 11.904, the number of virtual leader
is k = 8, and r;; = 634;. Fig. 3 depicts eight nonlinear
quadrotors swapping equally spaced positions on a circle of
radius 10 m located on the X-Y plane (z = 0). Each drone
is associated with a virtual leader which remains stationary
at the agent’s goal position for all time. At the initial 0.5
s, all drones are accelerating by having positive body Z
axes pointing towards their goals (snapshot at ¢ = 0.4 s
as a representative illustration). For ¢ € (0.5,5.4] s, the
quadrotors negotiate trajectories by reacting purely to the
constrained swarm dynamics (snapshot at ¢ = 3 s as a
representative illustration). For ¢t € (5.4,11] s, all agents
converge to their goals due only to the tracking control
actions, as no collision avoidance constraints are active from
Fig. 4. Then, all drones are stabilized at their goal positions
in horizontal hover for ¢ € (11, 20] s, as evidenced from the
stabilized body thrust forces that counterbalance the gravity
in Fig. 5.

Zhttps://youtu.be/TX-al2Lx3dM
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Minimum collision constraint distances (m)

10 15 20
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Fig. 4: Minimum relative distances and its components along the three
inertial axes for all quadrotor pairs with active trio of collision avoidance
constraints. Such minimum relative distances along different directions are
stabilized closer to the corresponding thresholds.

120

100

(N)

80

Control thrust, f;

60

Time (s)

Fig. 5: Total thrust magnitude of 8 drones expressed in the body frame.

TABLE I: COMPUTATION TIME PER ITERATION (MILLISECONDS) FOR A
SWARM OF N NONLINEAR MINIATURE QUADROTORS

N 5 10 20 40 80
t (ms) 0.0653 0.0690 0.0968 0.250 0.602

3) Computational Efficiency: Table I presents the elapsed
real time for obtaining control actions for different numbers
of agents for single swarm tracking as in Section IV-.1.
m, I, I,, I, o, and r;; are all scaled to one fifth of
those used in Section IV-.1, resulting in a much crowded
configuration and thus more active constraints. The only
differences in the simulation setup between these runs are
the number of agents and the uniformly generated random
initial positions for all agents. The computation time counts
the time accumulated over the simulation span to identify
active set of constraints, to construct every term in (12),
and to solve for the command control actions u and the
highest order derivatives x. Then, the computation time per
iteration is calculated by dividing the total elapsed time by
the total number of numerical integration steps. Similarly,
the computation time per iteration for the case study in
Section IV-.2 is 6.134 x 107° s. Table I demonstrates that
the proposed control law is computationally efficient for a
swarm of up to at least 80 nonlinear quadrotors.

V. CONTRIBUTIONS AND FUTURE WORK

We have proposed an efficient, novel, nonlinear feedback
control law for general constrained systems and applied
it to simultaneously control the positions and attitudes of

multiple nonlinear quadrotors subjected to 3-D tracking
and collision avoidance constraints. Our method is based
on a generalization of Gauss’s principle of least constraint
(GPLC) combined with a generalized constraint stabilization.
At each time instant, the active constraints are dynamically
identified, differentiated, stabilized, and incorporated to com-
pute nonlinear feedback controls that drive nonlinear system
dynamics to obey constraints by simply solving a KKT
system (a linear matrix equation) without iteration.

To the best of our knowledge, this work is (a) the first
generalization of GPLC to control a general (in terms of
constraint type and system dynamics order) constrained
dynamical system, and (b) the first true nonlinear unified
position-attitude control of a quadrotor swarm with collision
avoidance by exploiting nonlinear quadrotor dynamics with
a solution uniqueness guarantee. Note that no linearization
or iteration is involved at any stage in our framework.

Along this promising line of research, the proposed control
can be further developed to investigate its performance
subject to obstacle avoidance, actuator delay, modeling un-
certainties, exogenous disturbances, sensor noise, and decen-
tralized architectures. Furthermore, the proposed method is
amenable to physical validations thanks to its computational
efficiency.
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