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Abstract— This paper presents a nonlinear and discontinuous
control scheme for two-dimensional (2-D) multi-agent multi-
swarm navigation that resolves deadlocks, without heuristics,
by agents reacting purely to their constrained dynamics. The
method is based on extensions of Gauss’s Principle of Least
Constraint that dynamically identify, incorporate, and stabilize
time-varying sets of constraints and that integrate actuator
saturation and delay. The deadlocks are naturally resolved by
formulating the 2-D leader following and collision avoidance
requirements as decomposed inequality constraints along the
X and Y axes and by asymmetrically assigning zero collision
avoidance constraint value to a specific branch. Numerical
results are presented for two agents and two 15-agent swarms
resolving nominal deadlocks at a computation time order of 10
microseconds, demonstrating the efficacy and efficiency of the
proposed approach.

I. INTRODUCTION

Multi-agent swarms are gaining more attention in diverse
applications such as exploration, surveillance, and rescue [1].
One remaining challenge for controlling multi-agent swarms
is the avoidance of inter-agent collision and the resolution of
deadlocks [2]. Deadlocks can occur when some or all agents
in multi-agent swarms are involved in inter-agent collisions
that result in the system stagnating instead of navigating to
its goal. Existing methods of handling collision avoidance for
multi-agent navigation include velocity obstacles (VO) [3],
[4], artificial potential fields (APF) [5], [6], mixed-integer
programs (MIP) [7], [8], and control barrier functions (CBF)
[9], [10]. Having merits in their own, each of these methods
may have shortcomings under certain scenarios. For exam-
ples, VO methods [3], [4] assume constant speeds in crash
avoidance and do not guarantee the solution uniqueness.
APF methods [5], [6] assume infinite control actions for
collision avoidance close to agents’ surfaces, and the solution
could be trapped into local minima. MIP [7], [8] become
computationally expensive when the swarm size becomes
large, while CBF approaches [9], [10] do not incorporate
actuation delay and may not be computationally cheap when
the goal positions do not remain stationary in solving the
constrained optimization problem. Furthermore, not all of
these approaches have a deadlock resolution, and they are
not in general guaranteed to pursue the goal within a given
time span.

In the navigation of large scale two-dimensional (2-D)
multi-agent systems, the coordinated motion for multiple
agents as a unit is more important than the planned trajectory
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of each individual agent to perform cooperative tasks [1]. In
this paper, we propose a control framework for multi-agent
multi-swarm (MAMS) navigation with collision avoidance,
deadlock resolution, goal pursuit within a specific time
frame, and actuator saturation and delay. Our approach is
based on the extended Gauss’s Principle of Least Constraint
(GPLC) [11].

The original GPLC, along with its mathematically equiva-
lent counterpart, the Udwadia-Kalaba (U-K) equations [12],
has been applied to control multi-agent systems of small
numbers [13], [14]. However, neither the original GPLC nor
the U-K equations can accommodate inequality constraints,
actuator saturation, or actuator delay.

This paper extends our previous work on GPLC control
scheme that demonstrated collision free navigation of a
dense swarm of hundreds of agents [11]. Neither deadlock
resolution nor multi-swarm control was addressed in this
initial study. In [11], leader following and collision avoidance
constraints are scalar constraints on relative distances.

This paper starts with a Lagrangian perspective to derive
the GPLC Karush-Kuhn-Tucker (KKT) system. Constraints
are formulated for X and Y coordinates in a componentwise
manner, and deadlock resolution is naturally achieved by
selecting the set of bounds which may be satisfied by strict
inequalities and the set that are satisfied with equality or
inequalities.

Fundamentally, the approach developed herein allows for
constraint violation, by design, in order to compute control
actions that adaptively negotiate agents’ trajectories into
admissible configurations. The set of active inequality con-
straints changes dynamically and is identified without itera-
tions. The KKT formulation of the GPLC allows for the in-
corporation of actuator saturation and delay and distinguishes
control forces due to different constraints. Moreover, the
method naturally resolves deadlock configurations, without
the need for case-dependent heuristics. The equations of
motion of the closed-loop system are unique, and the method
is computationally efficient.

In the following, we present a new derivation of the GPLC
in Section II and formulate 2-D MAMS navigation problem
in Section III. Next, numerical studies on agent-agent and
swarm-swarm head-on collision are presented in Section IV,
followed by the conclusions and future work in Section V.

II. PRELIMINARIES FOR CONSTRAINED DYNAMICS

A. Gauss’s Principle of Least Constraint (GPLC)

GPLC provides a perspective on the effect of constraints
on the motion of mechanical systems described by gener-
alized coordinates q(t) ∈ R2N , having symmetric positive
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definite mass matrices M ∈ R2N×2N and subject to C active
constraints

g(q, t) = c (1)

at any time instant, where c denotes constant thresholds. The
GPLC framework requires that the constraint functions, g :
R2N+1 → RC , be at least twice differentiable in time such
that

d2

dt2
g(q, t) =

∂g

∂q
q̈ +

d

dt

(
∂g

∂q

)
q̇ +

∂2g

∂t2
= 0 (2)

are linear in the coordinate accelerations, q̈. Equation (2)
may be compactly written as

A(q, t) q̈ = b(q, q̇, t) , (3)

where

A(q, t) =
∂g

∂q
=


∂g1(q,t)

∂q1
. . . ∂g1(q,t)

∂q2N
...

. . .
...

∂gC(q,t)
∂q1

. . . ∂gC(q,t)
∂q2N

 . (4)

The Lagrangian for the dynamical system can be defined
as

L = T − V (5)

where T = q̇TMq̇/2 denotes the kinetic energy, and V
denotes the potential energy depending only on q.

Noting that g − c = 0 for any time t, the Lagrangian L
may be adjoined with -λT(g − c) such that

L̄ = L− λT(g − c) , (6)

where λ ∈ RC contains the Lagrange multipliers associated
with the active constraints (1).

Applying Euler-Lagrange differential equations to the aug-
mented Lagrangian L̄, we obtain the constrained equations
of motion

d

dt

(
∂L̄

∂q̇

)
− ∂L̄

∂q
= 0

=⇒ d

dt

(
∂T

∂q̇

)
+
∂V

∂q
+ λT

∂g

∂q
= 0 (7)

=⇒ Mq̈− f(q) + ATλ = 0 ,

where f(q) = −(∂V
∂q )T are the nonconstraint forces due to a

conservative potential V .
Combining 2N equations (7) with C double-differentiated

constraint equations (3), we obtain 2N + C equations[
M AT

A 0

] [
q̈
λ

]
=

[
f
b

]
(8)

linear in 2N +C unknowns, where 0 denotes a zero matrix.
fc , -ATλ represents the actions required to enforce the
constraints. The GPLC KKT system (8) is equivalent to that
in [11] which is derived from a Newtonian perspective.

The controlled space for the system is defined based on the
equality constraints geq = ceq and the inequality constraints
gin ≤ cin. At each time instant, the active constraint set is
identified as the collection of all equality constraints and
all inequality constraints that exceed their corresponding

thresholds. This set of C active constraints is treated as
equality constraints g = c and varies over time according
to the natural evolution of constrained system dynamics.

In the navigation of individual agents within MAMS
systems via GPLC, the feedback control law results from
a set of holonomic constraints that describes the desirable
behaviors of those agents (i.e., a subswarm): to keep each
agent close enough to its virtual leader and far enough away
from their neighbors. The constraint forces fc computed via
the GPLC approach can be interpreted as the control actions
required to move agents to admissible trajectories. These
control actions are saturated and delayed in order to model
realistic limitations on actuator capacity and bandwidth. The
resulting control scheme is nonlinear and discontinuous.

B. Existence and Uniqueness of the solution of KKT Systems

Proposition 1: The MAMS systems considered in this
study has a diagonal positive definite mass matrix, thus (8)
is singular if and only if AT has a nontrivial null space.

Proof: See Proposition 1 in [11].

C. Stabilization of Active Constraints

Enforcing (3) does not necessarily satisfy (1) due to
numerical errors which can accumulate in explicit finite-
precision numerical integration. Furthermore, the unavoid-
able realistic issues of exogenous disturbance, actuator satu-
ration and delay, and inconsistent initialization (i.e., initial
states that violate constraints) may drive the coordinate
trajectories to deviate from one or more constraint. In control
via GPLC, the command control actions result from active
constraints, and the constraint errors are asymptotically sta-
bilized by Baumgarte’s stabilization [15] so that g̈ = 0 is
replaced with

g̈ + 2ζωġ + ω2(g − c) = 0 , (9)

where g is any linearly independent element (due to Propo-
sition 1 to guarantee the existence and uniqueness of the
solution) of the vector of active constraints g. Applying (9)
to the set of active constraints g at each time step (with
possibly different values for ω and ζ in each constraint) and
representing them in a more compact manner, we obtain

A(q, t) q̈ = b̂(q, q̇, t) , (10)

where b̂ now contains terms involving ω and ζ. Compared to
b in (3), ω and ζ may be respectively regarded as the natural
frequency and damping ratio of the constraint oscillators and
therefore may be viewed as adjustable control parameters.

Combining (7) with the stabilized constraints (10) yields[
M AT

A 0

] [
q̈
λ

]
=

[
f

b̂

]
, (11)

which we term the GPLC KKT system with constraint
stabilization.
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D. Regularization

In the navigation of large scale MAMS systems, A may
be a tall matrix, i.e., C > 2N . In addition, some active
constraints may not be linearly independent at some time
instants. In this study, we regularize the system (11) as [11][

M AT

A -βI

] [
q̈
λ

]
=

[
f

b̂

]
, (12)

where I denotes an identity matrix, 0 < β � m is the
regularization factor, and the original problem (11) is attained
for β = 0. The solution of (12) is a unique approximate
solution of (11).

III. SWARM OF SWARMS NAVIGATION

Our problem at hand is a swarm of K swarms navi-
gating in a Cartesian plane. Each subswarm is assigned a
guiding virtual leader with position coordinates p̄k(t) =
[x̄k(t) ȳk(t)]T ∈ R2 and has a number of Nk agents,
k = 1, . . . ,K such that

∑K
k=1Nk = N . Agent i has

a constant mass mi and is at the position coordinates
pi(t) = [xi(t) yi(t)]

T ∈ R2, i = 1, . . . , N . Note that the
standard multi-agent point-to-point navigation problem in
which each agent has its own goal position can be attained
by setting K = N and Nk = 1, ∀k, and by prescribing each
agent’s virtual leader stationary at the agent’s goal. Thus,
our problem formulation is more general than the standard
multi-agent point-to-point navigation.

In the following, the sub/superscripts u, l, x, and y denote
upper bound, lower bound, X component, and Y component,
respectively. The subscript k refers to the index of the
subswarm and thus the virtual leader, while the subscripts
i and j denote the indices of agents. The sub/superscripts
are used where appropriate to denote the relevant physical
quantities.

A. Unconstrained Dynamics

We assume that each agent i within the MAMS system is
subjected to double integrator dynamics,[

mi 0
0 mi

] [
ẍi
ÿi

]
=

[
fx
i

fy
i

]
, (13)

where fx
i and fy

i are respectively the nonconstraint forces
exerted on agent i along the X and Y axes and could result
from environmental or adversarial processes.

B. Constraints

Let subswarm k ∈ {1, . . . ,K} be constrained to follow its
virtual leader at p̄k(t). We want all agents in the subswarm
to follow their virtual leader within a rectangle centered at p̄k

with edge lengths 2dk = 2[dx
k d

y
k]T ∈ R2. Mathematically,

the leader following constraints are

gik = [gx
ik g

y
ik]T , |∆pik| = |pi − p̄k| ≤ dk , (14)

where | · | denotes absolute value, and the inequality sign
denotes componentwise comparison.

Pairwise collision must be avoided for all adjacent agent
pairs {i, j}. We enclose each agent within a virtual rect-
angular buffer so that for agent pair {i, j} the buffer size
between them along the X and Y axes are rij = rji =
ri + rj = [rx

ij ry
ij ]

T ∈ R2. Mathematically, the collision
avoidance constraints are

gij = [gx
ij g

y
ij ]

T , |∆pij | = |pi − pj | ≥ rij . (15)

Note that only the ordered pair {i, j}, rather than both {i, j}
and {j, i}, is considered to avoid repeating constraints.

Constraints (14) are convex while (15) are nonconvex.
Note that the constants dk and rij can assume different
values if the swarm of swarms at hand is heterogeneous.

C. Constraint Error Stabilization

During the natural evolution of the constrained MAMS
dynamics, the active inequality constraints (14) and (15) are
dynamically determined by comparing the involved relative
distances to their corresponding thresholds. The active con-
straints are then double differentiated as (2), stabilized as
(10), and incorporated into the system (12) at each time step.

Agent i is not following its leader closely enough if gik

is active along at least one dimension, while the agent pair
{i, j} is in imminence of colliding virtual buffers when
both gx

ij and gy
ij are violated. Both (14) and (15) can be

decomposed into two branches: an upper and a lower bound
on pi, i.e.,

gu
ik = [gxu

ik gyu
ik ]T , {0 ≤ ∆pik ≤ dk} ,

gl
ik = [gxl

ik g
yl
ik]T , {0 < ∆pki ≤ dk} ,

gu
ij = [gxu

ij gyu
ij ]T , {∆pij ≤ -rij} ,

gl
ij = [gxl

ij g
yl
ij ]T , {∆pji ≤ -rij} .

Taking the first- and second-order time derivative of gu
ik,

gl
ik, gu

ij , and gl
ij , respectively, we obtain

ġu
ik = -ġl

ik = ∆ṗik , g̈u
ik = -g̈l

ik = ∆p̈ik , (16)

ġu
ij = -ġl

ij = ∆ṗij , g̈u
ij = -g̈l

ij = ∆p̈ij . (17)

Therefore, the second-order constraint dynamics can be
stabilized by Baumgarte’s method as presented in II-C.

D. Regularized GPLC KKT System with Stabilization

The constrained dynamics for the swarm of swarms nav-
igation can be expressed as (12),[

M AT

A -βI

] [
p̈
λ

]
=

[
f

b̂

]
, (18)

where M = diag(. . . ,mi,mi, . . .) ∈ R2N×2N , p =
[. . . ,pT

i , . . .]
T ∈ R2N , f = [. . . , fx

i , f
y
i , . . .]

T ∈ R2N , ∀i =
1, . . . , N , and each row of A ∈ RC×2N corresponds to
an active constraint and has the same generic structure but
different column numbers for nonzero X and Y components
for gu

ik, gl
ik, gu

ij , and gl
ij , respectively. Rows of A for all

types of constraints are presented in Table I, where we can
observe that A contains only 1, -1, and 0. Ap̈ = b̂ are
stabilized active constraints as in (10). Note that all zero
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TABLE I: ROW OF A FOR ALL TYPES OF CONSTRAINTS

Constraint Row of A Nonzero entries’ column numbers
gxuik ; gyuik [0 1 0] 2i− 1 ; 2i
gxlik ; gylik [0 -1 0] 2i− 1 ; 2i
gxuij ; gyuij [0 1 0 -1 0] [2i− 1, 2j − 1] ; [2i, 2j]
gxlij ; gylij [0 -1 0 1 0] [2i− 1, 2j − 1] ; [2i, 2j]

vectors 0 in A as shown in the second column of Table I
have the appropriate dimensions such that each row of A is
in R2N .

E. Deadlock Resolution

In the presented MAMS navigation problem, deadlocks
occurs in which one or more agent is blocked from pro-
gressing towards its virtual leader under nonzero control
actions for leader following. Specifically, when the actions of
leader following constraints are colinear with the actions of
collision avoidance constraints, the leader following control
actions attempt to pull the colliding agents through each
other, resulting in potential deadlocks.

The normal component of ∆ṗij between colliding agents

{i, j}, d
dt‖∆pij‖ =

∆pT
ij

‖∆pij‖∆ṗij , contributes to collision,
while the tangential component of ∆ṗij leads to only
rotation about each other. ‖ · ‖ denotes 2-norm of a vector.
Hence, the most dangerous scenario is {i, j} undergoing a
head-on collision when d

dt‖∆pij‖ = ‖∆ṗij‖.
In our earlier work [11], the leader following and collision

avoidance of a single navigating swarm are described as
scalar constraints in terms of ‖∆pik‖2 (k ≡ 1 since there is
only one virtual leader) and ‖∆pij‖2, respectively. Hence,
the symbolic entries of the corresponding A (∆px

ik and
∆py

ik, and, ∆px
ji, ∆py

ji, ∆px
ij , and ∆py

ij . Computed as (4),
see Equation (25) in [11] for more details.) are the respective
functions of ∆pik and ∆pij and, thus, the corresponding
control forces -ATλ align with ∆pik and ∆pij , respectively.
Therefore, a deadlock for agent i occurs when scalar leader
following (between agent i and the virtual leader) and
collision avoidance (between agent i and j) constraints are
both active and when ∆pik, ∆ṗik, ∆pij , and ∆ṗij are
colinear.

In this work, decomposed constraints gik and gij provide
independent control forces along the X and Y axes, allowing
naturally for a multi-swarm formulation and deadlock reso-
lution. By having different control parameters ζ, ω, dk, and
rij for g̈ik and g̈ij stabilization, the proposed decomposed
constraint formulation can provide more maneuverability in a
collision and thus deadlock than that of the scalar constraint
formulation in [11], in which the control forces for colinear
active leader following and collision avoidance constraints
on one agent are always in opposite directions.

Selecting the branch (upper or lower) to take the value
zero for active decomposed collision constraints gx

ij and
gy
ij completes the deadlock resolution scheme. Note that in

the GPLC control, the Lagrange multipliers associated with
active constraints are nonzero for all time. In [11], when the

virtual buffers of an agent pair {i, j} are about to collide
under either |∆px

ij | (i.e., gx
ij) or |∆py

ij | (i.e., gy
ij) being

exactly zero, the corresponding symbolic entries in A (∆px
ij

and ∆px
ji, or, ∆py

ij and ∆py
ji) and thus the corresponding

command control in -ATλ will also be zero, i.e., no control
action to avoid crash along that axis for the colliding agent
pair {i, j}, leading to potential deadlocks. In this work, the
nonzero entries in A corresponding to gx

ij and gy
ij are either

1 or -1 regardless of the values of ∆px
ij and ∆py

ij . Hence,
the command controls for agent i and j corresponding to
collision avoidance along the X and Y axes have nonzero
identical magnitudes but opposite direction, respectively.

In this study, a subset of decomposed collision constraints
are selected to include equality to zero such that the active
gu
ij and gl

ij are respectively {-rij < ∆pij ≤ 0} and {0 <
∆pij < rij}. Therefore, ∀∆pij ∈ (-rij , rij), the control
actions for collision avoidance are nonzero and can achieve
any direction in a 2-D plane by adjusting ζ, ω, and rij .

F. Actuator Saturation and Dynamics

We assume as in [11] that the actuator is subjected to
saturation fc = min{max{-ATλ, fl}, fu } and the first-
order dynamics ḟa = (fc − fa)/τ , where fl and fu are
respectively the lower and upper bound for command control
force, fc is the saturated command control force, fa is the
actual control force, and 0.05 sec / τ / 1.0 sec is a time
constant. Note that ḟa is bounded automatically given that
fa = 0 at t = 0.

With the saturated and delayed actuator force fa, the actual
acceleration is updated as ˆ̈p = M-1(f + fa). The vector of
state derivatives [ṗT ˆ̈pT ḟ T

a ]T is then used in the numerical
integration.

IV. NUMERICAL RESULTS

The proposed method is numerically implemented in
MATLAB on a Windows laptop with a 2.50 GHz Intel i5-
7200U CPU and 8 GB memory. Noting that our framework
can readily cope with heterogeneous agents, we adopt ho-
mogeneous agents in this work. The parameters used in this
study are: mi = 10 kg, g = 9.8 kg/m2, ωx

ik = ωy
ik = 3

rad/s, ωx
ij = ωy

ij = 4 rad/s, ζx
ik = ζy

ik = 1, ζx
ij = ζy

ij = 1,
β = mi/104, τ = 0.1 s, and fu = -fl = 5mig 1 N, where
1 is a length-2N vector full of ones. The time integrator
used is the fourth-order Runge-Kutta method with a constant
time step of 0.005 s. The virtual leaders start and end at
positions symmetric about the Y axis with zero velocities and
remain stationary at the end positions for 5 s. The motions of
the leaders have the same magnitude but opposite sign. All
agents start from zero initial velocities, and the exogenous
forces are assumed to be zero for all time, as the external
disturbances can break the symmetry in a deadlock and thus
making the deadlock resolution less challenging.

A. Head-on Collision of Two Agents

Fig. 1 shows the trajectories of agents 1 and 2 exchanging
their regions by following two virtual leaders that swap
their initial and goal positions at [10, 0] and [-10, 0]. The
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Fig. 1: Trajectories of two virtual leaders and two agents. The gray dashed
lines are the paths of two virtual leaders. The solid lines are the agents’ path,
with � and× respectively denoting start and end positions. The agents come
to a deadlock midway but resolve it by reacting purely to the constrained
dynamics. The corresponding animation can be found online. 1

parameters dk and rij used in this case study are dx
k = dy

k =
2 m and rx

ij = ry
ij = 4 m. This is a perfectly symmetric

problem. The agents run into a head-on collision at x1 = 2
m and x2 = -2 m with the active gy

ij being exactly zero,
leading to a deadlock.

After solving (18), the command control actions for avoid-
ing collision between the two agents are the multiplication
of 1 and -1 in the row of A with λc

12 that corresponds to
active g12. Hence, the collision avoidance control actions of
the two agents have the same magnitude but opposite sign
in both X and Y axes.

From Fig. 2, we can observe that the agents satisfy the
following and collision constraints and thus have no control
actions for t ∈ [0, 2.5) s. The onset of control forces at
t = 2.5 s corresponds to both agents violating gx

ik for the
first time. Then, the control forces asymptotically converge to
zero due to the enforced Baumgarte’s stabilization on active
constraint dynamics. The agents are in danger of colliding
virtual buffers at t = 5 s, when a collision avoidance
constraint first becomes active. Since both gik and gij are
critically damped, ωik < ωij , in a deadlock the control
actions for collision constraints prevail over those for leader
following. For t ∈ [5, 8] s, the agents are subjected to
active collision constraints in both axes and active following
constraint in X axis, and the combined control actions due
to two active types of constraints repel the agents away from
each other. Finally, for t ∈ [8, 15] s, the collision constraints
become inactive, and the agents are driven towards their
leaders due to active following constraints along the X and Y
directions. Since the second-order dynamics for both types
of constraints are critically damped, the relative distances
along the X and Y axes are asymptotically stabilized to the
thresholds dx

k and dy
k for t ∈ [10, 15] s.

B. Head-on Collision of Two Swarms

Fig. 3 presents the trajectories of two 15-agent swarms
guided by two virtual leaders flipping positions between
[30, 0] and [-30, 0]. dk and rij in this case study are
dx
k = dy

k = d = 9 m and rx
ij = ry

ij = r = 4 m. The

1https://youtu.be/ogNqEoryYIQ

Fig. 2: The maximum and minimum command and actual control forces,
fc and fa. The gray dashed lines denote the actuator saturation bounds.
fc precedes fa due to first-order actuator dynamics. The controls are
asymptotically stabilized to zero due to constraint dynamics (9).

Fig. 3: Navigation trajectories of 2 swarms of 15 agents. The solid lines and
the dashed lines are respectively the agents’ paths for swarm 1 and 2. � and
× respectively denote the initial and goal positions for both swarms. The
agents come to a deadlock about midway but resolve it by reacting purely
to the constrained two-swarm dynamics. The corresponding animation is
available online. 2

X and Y initial positions of all agents are generated from
two sequences of uniformly distributed random numbers
within the intervals (-2dx

k, 2dx
k) and (-2dy

k, 2dy
k) around

the leaders’ initial positions, respectively. Note that this
random initialization does not obey all constraints and thus
the system is in the controlled space from t = 0.

From Figs. 4 and 5, we observe that the randomly gener-
ated initial positions do not satisfy all collision and following
constraints; however, the bounds on the constraint errors and
thus the individual constraint error asymptotically converge
to zero during the swarm navigation for t ∈ [2, 8] s, where
the bounds on control forces are smaller than the initial stage
in which the constraint errors are larger. In the middle of
the leaders’ motions, multiple agent pairs run into potential
deadlocks. Since the head-on collision of the two swarms
occurs along the X axis, the constraint errors for both types
of constraints are in general larger in the X axis than those
in the Y axis. The agents violate the following constraints
and resolve collision deadlock by reacting purely to the
constrained two-swarm dynamics, and the constraint errors
are asymptotically driven to admissibility. For t ∈ [18, 20]
s, the constraints are slightly violated, as evidenced by the

2https://youtu.be/10CXrmDop48
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Fig. 4: The maximum and minimum active collision avoidance constraint
errors.

Fig. 5: The maximum and minimum leader following constraint errors.

overall decreasing control forces in Fig. 6. Finally, when the
leaders remain stationary for t ∈ [20, 25] s, the constraint
errors remain constant over time, and the control forces
smoothly converge to zero, indicating that all agents come
to a stop.

The elapsed real time for control actions calculation
considers the time accumulated over the simulation span
to identify active constraints, to construct and solve (18),
and to compute and saturate the control actions fc. Then,
the computation time per time step is obtained by dividing
the total accumulative elapsed time by the total number of
integration steps. In this case study, the computation time per

Fig. 6: The maximum and minimum command and actual control forces,
fc and fa, for 2-swarm head-on collision. Both leaders are static at the goal
positions for t ∈ [20, 25] s. The gray dashed lines denote the actuator
saturation bounds. fc precedes fa due to first-order actuator dynamics.

time step is 2.5374× 10-5 s, indicating the efficiency of the
proposed approach.

V. CONCLUSIONS AND FUTURE WORK

This paper extends the application of Gauss’s Principle
of Least Constraint to the navigation of MAMS systems
to meet leader following and collision avoidance objectives.
By decomposing inequality constraints for leader following
and collision avoidance into separate constraints for each
coordinate and by asymmetrically allowing constraints to be
satisfied with an equality to zero, or restricting the constraint
to a strict inequality, the method provides a heuristic-free and
computationally efficient nonlinear feedback control law for
the navigation of agents to follow leaders and to negotiate
potential collisions and potential deadlocks.

To further this line of research, the proposed method can
be enhanced by examining its scalability for the computa-
tional efficiency and its performance under parametric uncer-
tainties, modeling errors, and obstacle avoidance. Moreover,
the decentralized and distributed counterparts of the proposed
control scheme would be an interesting topic of future work.
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