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Abstract— This paper presents a departure from hierarchical
cascade methods to control the position and attitude of a
fully nonlinear quadrotor. The paper presents a nonlinear
feedback control scheme that simultaneously controls position
and attitude. The proposed method is based on a generalization
of the Gauss’s Principle of Least Constraint (GPLC) for higher-
order constrained dynamical systems. By double differentiating
the rigid-body position dynamics of a fully nonlinear quadrotor
with respect to time, the translational and rotational dynamics
become fully coupled at the levels of snap and angular acceler-
ation, and the quadrotor is turned into a fully actuated system
in a reduced configuration space. A generalized Baumgarte’s
error stabilization (BES) is developed to asymptotically drive
constraint errors to zero. The nonlinear control law is due
purely to the natural evolution of constrained system dynamics.
To the best of our knowledge, this is the first instance that
GPLC and BES are both extended to higher-order systems
and that the control scheme for the position and attitude of a
quadrotor is unified into one step by making use of its fully
nonlinear constrained dynamics. The efficiency and efficacy of
the proposed method is demonstrated by numerical experiments
on a quadrotor tracking a prescribed conical spiral.

I. INTRODUCTION

Quadrotors are gaining an increasing interest in many
applications due to their design simplicity and agile ma-
neuverability [1]. Quadrotors are inherently challenging to
control since they are nonlinear, underactuated, and have
limited energy storage. In 2019, Nascimento and Saska
[2] reviewed over 800 papers on multi-rotor aerial vehicle
(MAV) control and concluded that the predominant literature
on MAV control is based on system and control theory that
makes use of a cascade control framework, in which the inner
loop attitude controller responses much faster than the outer
loop position controller. Further, approximately half of the
work employ linearized vehicle dynamics in controller syn-
thesis [2]. Cascade position-attitude control does not account
for the true inherent coupling of the quadrotor’s translational-
rotational dynamics. Furthermore, the performance of cas-
cade control architectures may not be sufficiently robust
to the unavoidable issues of constraint violations that may
arise from actuator delays, model uncertainties, or exogenous
disturbances. In addition, aggressive flights in obstacle-rich
environments may be difficult for control methods based on
linearized vehicle dynamics.

Few work has been conducted on unifying the position and
attitude controllers for quadrotors. These unified position-
attitude control methods include linear proportional-integral-
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derivative control [3], nonlinear model predictive control
[4], and sequential linear quadratic control [5], [6]. Having
merits of their own, these methods, however, adopt partially
linearized [3], [4] or fully linearized [5], [6] vehicle dynamics
in controller synthesis and requires iterative solution of
an optimization problem [4], [5], [6] that has no global
optimum guarantee [5], [6]. Moreover, the required number
of the control parameters is relatively large whose physical
meanings are in general challenging to be interpreted [3],
[4], [5], [6].

Udwadia and Kalaba (U-K) [7] rejuvenated Gauss’s Prin-
ciple of Least Constraint (GPLC) [8] by proposing U-
K equations, which have been used to analytically solve
problems of constrained mechanical systems [9], [10]. U-
K controls are applicable only to systems with second-order
dynamics, in which relative contributions of each constraint
to the net control actions may not be distinguished from each
other due to the elimination of Lagrange multipliers.

In this paper, we extend GPLC for a higher-order con-
strained dynamical system and express its dynamics as a
Karush-Kuhn-Tucker (KKT) system to address the limita-
tions of the U-K approach. The generalized GPLC (GGPLC)
is used to synthesize a unified position-attitude controller for
a fully nonlinear quadrotor. To the best of our knowledge,
this is the first instance that generalizes GPLC and uses it
in the control of any system and that unifies the position
and attitude control of a quadrotor without linearizing the
quadrotor’s fully nonlinear dynamics at any stage. The pro-
posed unified control architecture only involves the solution
of a matrix equation, without iteration, at each time step and
ensures the global optimality of the solution. The control
parameters in our method are physically interpretable with a
number of which less than that of the existing unified control
approaches. A generalized constraint error stabilization is
also developed to asymptotically drive the tracking constraint
errors to zero.

This paper is organized as follows. In Section II, we lay
out the foundations for the GGPLC for controlling higher-
order nonlinear dynamical systems. Then in Section III, we
formulate the unified position-attitude control of a quadrotor
based on its fully nonlinear dynamics. Next, numerical
results and discussions are presented in Section IV, followed
by the contributions and future work in Section V.

II. CONTROL OF HIGHER-ORDER CONSTRAINED
DYNAMICAL SYSTEMS

A. GPLC (Second-Order Systems)

Consider a system of N second-order ordinary differential
equations (ODEs), describing, for example, the accelerations
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of an unconstrained dynamical system in terms of N gen-
eralized coordinates q(t), M(q, t) a = fnc(q, q̇, t), where
M ∈ RN×N is a matrix of mass and inertial properties, a
denotes unconstrained accelerations, and fnc ∈ RN contains
all nonconstraint (noncontrol) forces exerted on the system.
We note here that in the absence of constraints, a = q̈ ∈ RN ,
and that elements of q̈ are the highest-order derivatives in
each equation.

A doubly-differentiable constraint on positions gj(q, t) =
0 raised to the acceleration level is linear in accelerations,

g̈j = q̇T

[
∂2gj
∂q2

]
q̇ +

∂gj
∂q

q̈ +
∂2gj
∂t2

= 0 ,

and a system of such differentiated constraints gj , j =
1, 2, . . . , C, is expressed herein as A(q, t) q̈ = b(q, q̇, t)
with initial conditions g = 0 and ġ = 0 at t = 0, where
A ∈ RC×N is the Jacobian matrix of g with respect to q.
GPLC [8] states that constrained accelerations q̈ minimize
the quadratic form of the difference between the constrained
accelerations q̈ and the unconstrained accelerations a. This
principle may be deduced by recognizing that Mq̈ = fnc
solves

min
q̈

1

2
q̈TMq̈− q̈Tfnc ,

and that constraining the minimization to satisfy Aq̈ = b is

max
λ

min
q̈

1

2
q̈TMq̈− q̈Tfnc + λT(Aq̈− b) , (1)

which is equivalent to [11]

max
λ

min
q̈

1

2
(q̈− a)TM(q̈− a) + λT(Aq̈− b) , (2)

by noting that q̈Tfnc = q̈TMa and that aTMa is a constant
in terms of solving the constrained optimization (2). We call
(1) the GPLC, which is an equivalence of the original GPLC
(2). The solution to (1) is represented by the KKT system[

M AT

A 0

] [
q̈
λ

]
=

[
fnc
b

]
, (3)

where 0 denotes a zero matrix of compatible dimensions.
The KKT system (3) represents the constrained equations
of motion in which the constraint forces are fc , -ATλ.
Section II-C provides the sufficient and necessary conditions
for a unique solution to (3).

The constrained acceleration q̈ and the constraint forces
fc for the constrained dynamics problem (1) can be also
calculated by

q̈ = a + M-1K(b−Aa) ,

fc = K(b−Aa) = KA(q̈− a) ,
(4)

where K(q, q̇, t) = M1/2(AM-1/2)+ and the superscript +
represents the Moore-Penrose pseudo-inverse. This solution
to the GPLC (1) are known as the Udwadia-Kalaba (U-
K) equations [7], which provide an analytical solution for
constrained motion of mechanical systems by eliminating the
Lagrange multipliers λ from the GPLC (1).

B. GGPLC (Higher-Order Systems)

In this section, we introduce a generalization of the GPLC
that applies to systems with dynamics expressed by higher-
order ODEs. In the following, we denote ẋ ∈ RN as a
vector of the highest-order derivatives in each of a set of
N ODEs. We note here that each element of ẋ can have a
different order of differentiation. The following exposition
simply mirrors that of Section II-A. Consider a system of
N ODEs of various orders that are linear in each of their
highest orders. The vector of the highest-order derivatives
ẋ may be expressed in terms of unconstrained dynamics as
Mẋ = fnc, in which the i-th row of M and the i-th element
of fnc may contain terms with derivatives of lower order than
that in ẋ.

A set of C constraints g = 0, that can be functions of
the states and the derivatives of the state elements up to
(but not including) the corresponding orders in ẋ, may be
differentiated with respect to time such that the differentiated
constraints are linear in ẋ. To enforce a set of differentiated
constraints Aẋ = b, the constrained ẋ solves

max
λ

min
ẋ

1

2
ẋTMẋ− ẋTfnc + λT(Aẋ− b) . (5)

We call (5) the GGPLC, since it assumes a similar form as
that of the GPLC (1), and ẋ denotes constrained derivatives
of the highest order in each equation. The GGPLC is equiv-
alent to minimizing the quadratic form of the difference be-
tween the true constrained highest-order derivatives and the
unconstrained ones, subjected to differentiated constraints.
The GGPLC leads to a KKT system for ẋ and the Lagrange
multipliers λ, [

M AT

A 0

] [
ẋ
λ

]
=

[
fnc
b

]
, (6)

which represents the saddle point of the augmented objective
(5). In the constrained equations of motion, fc , -ATλ are
the actions that enforce the constraints. We note here that in
this section and in the following, the variables M, fnc, g, A,
b, λ, N , C, and fc correspond to the system of higher-order
ODEs, whereas these variables all correspond to a system of
second-order ODEs in Section II-A.

In the following application of GGPLC to the control of
a quadrotor, Aẋ = b represents the differentiated form of
path tracking constraints. fc are associated with the control
thrust and moments required to bring the tracking errors
to zero. In this way, Equation (6) represents a nonlinear
feedback control rule to bring the quadrotor to a prescribed
path. The resulting control scheme is thus nonlinear and
is applied to the coupled equations of motion of a fully
nonlinear quadrotor. Before presenting the unified position-
attitude controller for a fully nonlinear quadroter in Section
III, this section closes with a proof of the sufficient and
necessary conditions for the unique solution to (6) and a
description of a generalized method to stabilize a constraint
g(t) enforced at a differentiated level in order to recover
from constraint violations that may arise from a number of
exogenous factors.
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C. Existence and Uniqueness of the Solution to KKT Systems

Proposition 1: The KKT system (6) is singular if and only
if either (a) AT has a nontrivial null space, or (b) the null
space of M intersects the null space of A.

Proof:
• (a) ⇒ singular KKT : If ∃λ 6= 0 such that ATλ = 0,

then ẋ = 0 solves Mẋ + ATλ = 0. Thus, [0T λT]T is
a nontrivial null space of the KKT matrix; hence, the
KKT system is singular. If the constraints are linearly
dependent, then any Lagrange multiplier in N (AT)
associates with constraint forces of zero.

• (b) ⇒ singular KKT : If ∃ ẋ 6= 0 such that Mẋ = 0
and Aẋ = 0, then λ = 0 solves both Mẋ + ATλ = 0
and Aẋ = 0. Hence, [ẋT 0T]T is a nontrivial null space
of the KKT matrix; thus, the KKT system is singular.
If an indefinite mass matrix contains a null space that
intersects with the null space of A, then the constraint
equations are not sufficient to uniquely determine ẋ.

• singular KKT ⇒ (a) or (b) : If ∃ [ẋT λT]T 6= 0 that lies
within the nontrivial null space of the KKT matrix, then
Aẋ = 0, implying that either ẋ = 0 or ẋ ∈ N (A).

– If ẋ = 0, then ATλ = 0, indicating that either
λ = 0 or λ ∈ N (AT). But [ẋT λT]T = 0 is trivial.
So if the KKT system is singular and ẋ = 0, then
∃λ 6= 0, λ ∈ N (AT).

– Alternatively, if the KKT system is singular and
if ∃ ẋ 6= 0, ẋ ∈ N (A), then λ can be 0. Pre-
multiplying (Mẋ+ATλ = 0) by ẋT gives ẋTMẋ =
0. So if the KKT system is singular and ∃ ẋ 6= 0,
ẋ ∈ N (A), then ẋ must also lie in the null space
of M.

D. Generalized Baumgarte’s Error Stabilization (GBES)

This section describes a generalization of Baumgarte’s
second-order constraint error stabilization [12] to higher-
order equations. Due to exogenous effects (e.g., exogenous
forces, or unmodeled dynamics) and numerical integration
errors, violations of constraints g = 0 (e.g., tracking errors)
may arise while enforcing the presumably stable dynamics

g(k) ,
dkg

dtk
= Aẋ− b = 0 , (7)

where the superscript k denotes the highest differentiation
order with respect to time such that the k-th time derivative
of g is linear in the highest-order state derivatives ẋ.

The intent of (7) is to enforce g = 0 by enforcing
g(k) = 0 for all time t > 0. However, constraint errors
may accumulate even from zero initial conditions (g =
ġ = · · · = g(k−1) = 0 at t = 0). Moreover, if (7) is
nonhomogeneous, then g will certainly deviate from zero.
The resulting constraint violations can be stabilized to zero
by imposing asymptotically stable dynamics on g(t),

dkg

dtk
+

k−1∑
i=0

κi
dig

dti
= 0 , (8)

where κi are called Baumgarte coefficients and are selected
to asymptotically drive g to zero. Substituting (7) into (8),
we obtain

Aẋ = b̂ , b−
k−1∑
i=0

κi
dig

dti
. (9)

By prescribing the eigenvalues σi of (8) in terms of natural
frequencies ωi and damping ratios ζi,

σi = ζiωi ± ωi
√
ζ2i − 1 ,

the companion matrix of (8) can be computed from its
eigenvalues to directly provide the Baumgarte coefficients
of any differentiation order k,

0 1 0 · · · 0
0 0 1 · · · 0
...

... · · ·
...

-β0 -β1 -β2 · · · -βk−1

 = VΛV-1 , (10)

where Λ is a diagonal matrix of the prescribed eigen-
values σi, and the corresponding columns of V are
[1 σi σ

2
i · · · σ

k−1
i ]T [13].

Enforcing the stabilized differentiated constraints (9) in-
stead of (7) in (6), we have[

M AT

A 0

] [
ẋ
λ

]
=

[
fnc
b̂

]
, (11)

which we term the GGPLC KKT system with constraint
stabilization.

Importantly, since the eigenvalues of (8) (a linear ODE)
are user-prescribed via (10), any constraint violation is
guaranteed to converge to zero with the dynamics specified
by ωi and ζi.

It is worthwhile to note that our GGPLC is more flexible
than the U-K equations in that the GGPLC method (a) can
handle systems of higher-order dynamics such as a quadrotor,
while U-K methods can only handle second-order dynamical
systems; (b) can asymptotically drive inadmissible initial
states and constraint violations to zero; (c) can demonstrate,
through Lagrange multipliers, how the contribution of each
constraint couples to the total control actions; and (d) is
computationally efficient as it only involves solving a KKT
system (a matrix equation) at any instant of time; no pseudo-
inverse computations or convergent iterative methods are
involved.

III. UNIFIED CONTROL FOR CONSTRAINED FULLY
NONLINEAR QUADROTOR DYNAMICS

A. Fully Nonlinear Quadrotor Dynamics

A quadrotor has six degrees of freedom and four control
inputs generated from the four spinning propellers. The
inertial frame is fixed to the ground with positive Z axis
pointing upwards, while the body-fixed frame coincides with
the principle axes of the quadrotor with thrust force acting
along positive body Z axis, which is perpendicular to the
quadrotor plane (body X-Y plane). The rotation matrix from
the body frame to the inertial frame is described by ZYX
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Euler angles, roll φ ∈ [-π, π], pitch θ ∈ (-π/2, π/2), and
yaw ψ ∈ [-π, π]:

R ,

xT

B

yT

B

zT

B

T

=

cψcθ cψsθsφ− sψcφ cψsθcφ+ sψsφ
sψcθ sψsθsφ+ cψcφ sψsθcφ− cψsφ
-sθ cθsφ cθcφ

 ,
(12)

where s and c are shorthanded for sine and cosine, respec-
tively. The Euler angle rates Θ̇E are calculated by

Θ̇E =

φ̇θ̇
ψ̇

 = EωB =

1 sφ tθ cφ tθ
0 cφ -sφ
0 sφ/cθ cφ/cθ

ωB , (13)

where t is shorthanded for tangent, and ωB = [p q r]T ∈ R3

are the angular velocities expressed in the body frame.
We model a quadrotor as a rigid body and describe its

dynamics by the Newton-Euler equations [14], [15],

m p̈I = ftRe3 −Ge3 = ftzB −Ge3 , (14)
J ω̇B + ωB × (JωB) = τB , (15)

where m is the total mass, G is the magnitude of the gravity,
pI = [x y z]T ∈ R3 are the position coordinates of the
center of mass expressed in the inertial frame, e3 = [0 0 1]T,
the overdot denotes the differentiation with respect to time,
ft is the magnitude of the total thrust force acting in the
body Z axis, J = diag(Ix, Iy, Iz) ∈ R3×3 is a diagonal
matrix of the principal moments of inertia of the quadrotor, ×
denotes the cross product operation of two vectors, and τB =
[τ1 τ2 τ3]T ∈ R3 contains the control torques expressed in
the body frame. Note that a bijection exists between [ft τ

T

B]
and Ω2

i , i = 1, 2, 3, 4, the squared spinning speeds of four
propellers [14]. In this study, we adopt [ft τ

T

B] as the inputs
to quadrotor dynamics, as we can always recover Ωi as true
inputs once we have [ft τ

T

B] in real world implementations.
By differentiating (14), we have respectively the jerk and

snap dynamics expressed in the inertial frame as

m
...
pI = ḟtzB + ftRω̂Be3 , (16)

m
....
p I = f̈tzB + 2ḟtRω̂Be3 + ft(Rω̂

2
Be3 + R ˙̂ωBe3) , (17)

where ω̂B denotes the skew-symmetric matrix of ωB, and

Ṙ = Rω̂B =

xT

B

yT

B

zT

B

T  0 -r q
r 0 -p
-q p 0

 . (18)

Equation (17) shows that the rotational dynamics is cou-
pled with the translational dynamics at the levels of snap and
angular acceleration. Therefore, the equations of motion of
a fully nonlinear quadrotor can be expressed by Equations
(17) and (15)[
mI3 M12

03×3 J

] [....
p I

ω̇B

]
=

[
f̈tzB + 2ḟtRω̂Be3 + ftRω̂

2
Be3

τB − ω̂BJωB

]
,

(19)
where the term

M12ω̇B ,
[
ftyB -ftxB 0

] [
ṗ q̇ ṙ

]T
= -ftR ˙̂ωBe3

achieves the coupling of the rotational dynamics with the
translational dynamics.

In (19), the command controls due to active constraints
are f̈t and τB, and ft and ḟt are treated as states. ftRω̂2

Be3

may be regarded as a centrifugal term, 2ḟtRω̂Be3 may be
regarded as a Coriolis term, and f̈tzB may be considered
as the “generalized actuation force” expressed in the inertial
frame as in Newton’s Second Law. Note that (19) is under-
actuated since no control is exerted on

....
x or

....
y .

Due to the inherent full coupling of the dynamics in (19),
we eliminate ṗ and q̇ from (19) by substituting ṗ = [τ1 −
(Iz − Iy)qr]/Ix and q̇ = [τ2 − (Ix − Iz)pr]/Iy from (15)
into (19) to obtain[

mI3 03×1

01×3 Iz

] [....
p I

ṙ

]
=

[
fut

(Ix − Iy)pq

]
+

[
zB -ftyB/Ix ftxB/Iy 03×1

0 0 0 1

] [
f̈t
τB

]
,

(20)

where fut = [(Iy + Iz − Ix)ftpr/Iy + 2ḟtq]xB + [(Ix + Iz −
Iy)ftqr/Ix − 2ḟtp]yB − [ft(p

2 + q2)]zB. Equation (20) can
be compactly written as Mẋ = fnc + Bu. It is evident from
(20) that the four highest-order state derivatives,

....
p I and ṙ,

are controlled independently by four command inputs, f̈t and
τB. As long as the drone is constrained from free falling, ft
will be nonzero for all time. The quadrotor thus becomes a
fully actuated system in a reduced configuration space, with
the input influence matrix B ∈ R4×4 being full rank.

B. Constraint Formulation

We want the quadrotor to track a reference trajectory
pr(t) = [x̄(t) ȳ(t) z̄(t)]

T ∈ R3 as accurate as possible. We
formulate tracking objective as three decomposed equality
constraints gt , ∆pI = [x − x̄ y − ȳ z − z̄]T = 03×1

whose first-, second-, third-, and fourth-order time derivatives
are respectively ġt = ∆ṗI, g̈t = ∆p̈I,

...
g t = ∆

...
pI, and....

g t = ∆
....
p I. Hence, the tracking constraints integrated with

the generalized error stabilization scheme become
....
p I =

....
p r−κ3∆

...
pI−κ2∆p̈I−κ1∆ṗI−κ0∆pI = b̂ , (21)

which is incorporated into (11) as Aẋ = b̂ .

C. Selection of Baumgarte Coefficients

The Baumgarte coefficients κi, i = 0, 1, 2, 3, in (21)
are the only user-defined control parameters in this unified
position-attitude controller for a fully nonlinear quadrotor.

During the natural evolution of constrained system dy-
namics, the onset of an active constraint g leads to initial
conditions for zero gin and generically nonzero (problem
dependent) ġin, g̈in, and

...
g in, with faster dynamics subject to

a generally higher initial value. Thus, an optimization prob-
lem that minimizes the peak constraint position subject to
zero initial constraint position and nonzero initial constraint
velocity, acceleration, and jerk can be posed as

min
ωi,ζi

max
t

g(q , t) gin = 0, ġin = 1 , g̈in = 2 ,
...
g in = 3

s.t. |σi|min ≤ |σi| ≤ |σi|max and ζi,min ≤ ζi ≤ ζi,max

(22)
to find an optimal set of Baumgarte coefficients, where
the frequency and damping of the constraint dynamics are
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Fig. 1. Representative convergence of constraint violation to zero via a
GBES parameterized by natural frequencies ωi and damping ratios ζi.

constrained to lie within user-specified ranges. So doing, this
optimization generally results in optimized damping ratios
lying within the specified range and |σi|opt = |σi|max.

D. GGPLC KKT System with Constraint Stabilization

With the constrained quadrotor dynamics (20) and the con-
straint dynamics (21), the system (11) for a fully nonlinear
quadrotor tracking problem becomes mI3 03×1 I3

01×3 Iz 01×3

I3 03×1 03×3

 ....
p I

ṙ
λ

 =

[
fnc
b̂

]
, (23)

where I denotes an identity matrix. Since A = [I3 03×1] is
always full rank, Equation (23) always has a unique solution
according to Proposition 1. -ATλ = Bu provides the control
actions that enforce tracking along three inertial axes. Since
B is full rank in all scenarios except the unconstrained free
falling, the control actions can be solved by u = -B-1ATλ.
Then, ṗ and q̇ can be obtained by substituting τ1 and τ2
into (15). In a real world implementation, the actual control
inputs provided by the four rotors are ft and τB, where ft
is a state and is equal to double integrating f̈t that is solved
from (23).

Constant-step fourth-order Runge-Kutta method is used
for numerical integration, where there are in total 20 states:
pI, ṗI, p̈I,

...
pI, ΘE, ωB, ft, and ḟt.

IV. NUMERICAL RESULTS

Based on the proposed method, we control a fully
nonlinear quadrotor to track a reference path: x̄(t) =
1.2t cos(2πt/5), ȳ(t) = 1.2t sin(2πt/5), z̄(t) = t, ∀t ∈
[0, 10] s; for t > 10 s, the reference path remains stationary at
[x̄(10) ȳ(10) z̄(10)]T. The numerical simulation is conducted
in MATLAB on a Windows laptop with a 2.50 GHz Intel i5-
7200U CPU and 8 GB memory. The parameters used in this
study are: m = 10 kg, g = 9.8 kg/m2, 2Ix = 2Iy = Iz = 2
kg·m2, κ0 = 1558.5, κ1 = 849.89, κ2 = 194.53, κ3 =
21.528, and the constant time step ∆t = 0.005 s. In practice,
the Baumgarte coefficients may be selected in relation to
actuator bandwidth and force capacity. In this example, the
Baumgarte coefficients result from solving the optimization

problem (22) with bounds 0.4π ≤ |σi| ≤ 2π and 0.5 ≤
ζi ≤ 1.0, resulting in |σ1| = |σ2| = 2π rad/s, ζ1 = 0.8,
and ζ2 = 0.9, as shown in Fig. 1. The quadrotor starts with
all zero states except the initial position at [-5 5 0]T in the
inertial frame and the initial thrust ft = mg = G.

The trajectories of the reference point and the drone
are presented in Fig. 2. Snapshots of the body-fixed frame
are also shown along the evolution of dynamics. We can
observe that the thrust axis (i.e., positive body Z axis, the
blue line in Fig. 2) tilts towards the reference point from
the offset initial position. After t = 2 s, the drone tracks
the reference with thrust axis pointing inwards the conical
spiral, counterbalancing the gravity and centrifugal force.
Immediately after t = 10 s, the quadrotor is subjected to
an overshoot due to its momentum and an abrupt change in
the reference velocities (from [ ˙̄x ˙̄y ˙̄z] = [1.2 15.08 1] m/s
at t = 10 s to [ ˙̄x ˙̄y ˙̄z] = [0 0 0] at t > 10 s). During
the overshoot, the drone (a) first decelerates to zero speed,
then (b) accelerates and (c) decelerates towards the stationary
reference point, and finally (d) stabilizes at the stationary
reference point in horizontal hover. The thrust axis tilts
towards the reference point in (a) and (b) and tilts away from
the reference point in (c). The good tracking performance
of the proposed control can also be viewed from the motion
time series of the reference point and the quadrotor in Fig. 3.
The corresponding 3-D animation is available online. 1

Since the row in AT that corresponds to ṙ in (23) is 01×3,
τ3 in -B-1ATλ is zero for all time, as shown in Fig. 4.
Thus, r is always the initial value (zero), as shown in Fig. 5.
Since we do not constrain the quadrotor to track a reference
yaw angle, the body X-Y plane is consistently yawing by
responding to the natural evolution of the constrained fully
nonlinear quadrotor dynamics. When the tracking errors are
reasonably small (both when tracking the spiral and when
stabilized at horizontal hover), no control torques about body
X and Y axes are applied, which is shown in Fig. 4.

The elapsed real time calculation for obtaining control ac-
tions considers the time accumulated over the 20-s simulation
window that is spent on constructing and solving the GGPLC
KKT system (23) and on computing the control actions
u. Then, the computation time per iteration is obtained
by dividing the total accumulative elapsed real time by
the total number of integration steps. In this study, the
computation time per iteration is 3.98×10-5 s, demonstrating
the computational efficiency and thus the promise of real
world applications of our method.

V. CONTRIBUTIONS AND FUTURE WORK

We have developed an efficient, novel, nonlinear control
architecture for higher-order constrained dynamical systems
and applied it to the tracking control of a fully nonlinear
quadrotor. The proposed method is based on a generaliza-
tion of GPLC combined with a generalized constraint error
stabilization. To the best of our knowledge, our work is (a)
the first generalization and application of GPLC to control

1https://youtu.be/-1QB2EVS2fQ
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Fig. 2. A fully nonlinear quadrotor tracks a reference trajectory (first a
conical spiral, then at rest at the end position) with snapshots of the drone’s
body frame along dynamics evolution. The red, green, and blue lines denote
the X, Y, and Z axes of the body frame, respectively. The control thrust
vector acts along the positive body Z axis.

Fig. 3. Motion time series of the quadrotor and the reference path.

higher-order constrained dynamical systems, (b) the first gen-
eralization of Baumgarte’s second-order error stabilization
to higher-order constraint dynamics, and (c) the first unified
one-step position-attitude control for a quadrotor that is due
purely to its constrained fully nonlinear dynamics and that
possesses a globally optimal solution.

Along this promising line of research, the proposed con-
trol method can be further developed to handle scenarios
involving: linearly dependent constraints, actuator delay,
saturation, modeling uncertainties, exogenous disturbances,
obstacle avoidance, collision avoidance, quadrotor team co-
ordination, and decentralized architectures. In addition, our
control algorithm is promising for real world experiments,
thanks to its structure simplicity and computation efficiency.
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